K-medoid clustering containerized allocation algorithm for cloud computing environment

Author:

AbdElSamea AmanyORCID,Saif Sherif M.

Abstract

AbstractLoad balancing is critical for container-based cloud computing environments for several reasons. A lack of appropriate load balancing techniques could result in a decrease in performance and possible service interruptions as some nodes get overloaded, while others are left underutilized. Cloud service providers can reduce latency and boost system performance by strategically placing containers using clustering algorithms. These techniques aid in efficiently using resources and load balancing by clustering related containers together according to their shared attributes. Clustering strategies are effective in allocating and controlling resources to meet the demands of a changing workload. Algorithms for clustering combine related workloads or containers into clusters, improving performance isolation and maximizing resource usage. One popular methodology for data clustering is the K-Medoid Clustering Algorithm. It is especially helpful when working with categorical data or when the dataset contains outliers. K-medoids is an unsupervised clustering approach where the core of the cluster is made up of data points known as “medoids.” A medoid is a location in the cluster whose total distance to every object in the cluster—also known as its dissimilarity—is as small as possible. Any appropriate distance function may be used, such as the Manhattan distance, the Euclidean distance, or another one. Thus, by choosing K medoids from our data sample, the K-medoids method splits the data into K clusters. This work presents the K-Medoid clustering technique for containers, which can enhance load balancing, decrease resource execution times, and increase resource utilization rates all at the same time. The results of the experiment show that the proposed method outperforms MACO and FCFS in terms of throughput by about 70% when number of cloudlets increased. The relative improvement of execution time of the proposed K-medoid algorithm w.r.t FCFS is about 50%.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3