Hypothyroidism attenuates protein tyrosine nitration, oxidative stress and renal damage induced by ischemia and reperfusion: effect unrelated to antioxidant enzymes activities

Author:

Tenorio-Velázquez Verónica M,Barrera Diana,Franco Martha,Tapia Edilia,Hernández-Pando Rogelio,Medina-Campos Omar Noel,Pedraza-Chaverri José

Abstract

Abstract Background It has been established that hypothyroidism protects rats against renal ischemia and reperfusion (IR) oxidative damage. However, it is not clear if hypothyroidism is able to prevent protein tyrosine nitration, an index of nitrosative stress, induced by IR or if antioxidant enzymes have involved in this protective effect. In this work it was explored if hypothyroidism is able to prevent the increase in nitrosative and oxidative stress induced by IR. In addition the activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was studied. Control and thyroidectomized (HTX) rats were studied 24 h of reperfusion after 60 min ischemia. Methods Male Wistar rats weighing 380 ± 22 g were subjected to surgical thyroidectomy. Rats were studied 15 days after surgery. Euthyroid sham-operated rats were used as controls (CT). Both groups of rats underwent a right kidney nephrectomy and suffered a 60 min left renal ischemia with 24 h of reperfusion. Rats were divided in four groups: CT, HTX, IR and HTX+IR. Rats were sacrificed and samples of plasma and kidney were obtained. Blood urea nitrogen (BUN) and creatinine were measured in blood plasma. Kidney damage was evaluated by histological analysis. Oxidative stress was measured by immunohistochemical localization of protein carbonyls and 4-hydroxy-2-nonenal modified proteins. The protein carbonyl content was measured using antibodies against dinitrophenol (DNP)-modified proteins. Nitrosative stress was measured by immunohistochemical analysis of 3-nitrotyrosine modified proteins. The activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was measured by spectrophotometric methods. Multiple comparisons were performed with ANOVA followed by Bonferroni t test. Results The histological damage and the rise in plasma creatinine and BUN induced by IR were significantly lower in HTX+IR group. The increase in protein carbonyls and in 3-nitrotyrosine and 4-hydroxy-2-nonenal modified proteins was prevented in HTX+IR group. IR-induced decrease in renal antioxidant enzymes was essentially not prevented by HTX in HTX+IR group. Conclusion Hypothyroidism was able to prevent not only oxidative but also nitrosative stress induced by IR. In addition, the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase seem not to play a protective role in this experimental model.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3