Alterations of renal phenotype and gene expression profiles due to protein overload in NOD-related mouse strains

Author:

Wilson Karen HS,McIndoe Richard A,Eckenrode Sarah,Morel Laurence,Agarwal Anupam,Croker Byron P,She Jin-Xiong

Abstract

Abstract Background Despite multiple causes, Chronic Kidney Disease is commonly associated with proteinuria. A previous study on Non Obese Diabetic mice (NOD), which spontaneously develop type 1 diabetes, described histological and gene expression changes incurred by diabetes in the kidney. Because proteinuria is coincident to diabetes, the effects of proteinuria are difficult to distinguish from those of other factors such as hyperglycemia. Proteinuria can nevertheless be induced in mice by peritoneal injection of Bovine Serum Albumin (BSA). To gain more information on the specific effects of proteinuria, this study addresses renal changes in diabetes resistant NOD-related mouse strains (NON and NOD.B10) that were made to develop proteinuria by BSA overload. Methods Proteinuria was induced by protein overload on NON and NOD.B10 mouse strains and histology and microarray technology were used to follow the kidney response. The effects of proteinuria were assessed and subsequently compared to changes that were observed in a prior study on NOD diabetic nephropathy. Results Overload treatment significantly modified the renal phenotype and out of 5760 clones screened, 21 and 7 kidney transcripts were respectively altered in the NON and NOD.B10. Upregulated transcripts encoded signal transduction genes, as well as markers for inflammation (Calmodulin kinase beta). Down-regulated transcripts included FKBP52 which was also down-regulated in diabetic NOD kidney. Comparison of transcripts altered by proteinuria to those altered by diabetes identified mannosidase 2 alpha 1 as being more specifically induced by proteinuria. Conclusion By simulating a component of diabetes, and looking at the global response on mice resistant to the disease, by virtue of a small genetic difference, we were able to identify key factors in disease progression. This suggests the power of this approach in unraveling multifactorial disease processes.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

Reference50 articles.

1. Excerpts from the United States Renal Data Systems 2002 annual report: Atlas of end-stage renal disease in the United States. American Journal of Kidney Diseases. 2003, S7-254: S7-254.

2. Croker BP, Dawson DV, Sanfilippo F: IgA Nephropathy. Correlation of Clinical and Histologic Features. Laboratory Investigation. 1983, 48: 19-24.

3. Walls J: Relationship between proteinuria and progressive renal disease. American Journal of Kidney Diseases. 2001, 37: S13-S16.

4. Wilson KHS, Eckenrode SE, Li QZ, Ruan QG, Yang P, Shi JD, Davoodi-Semiromi A, McIndoe RA, Croker BP, She JX: Microarray analysis of gene expression in the kidneys of new- and post-onset diabetic NOD mice. Diabetes. 2003, 52: 2151-2159.

5. Chen A, Wei CH, Sheu LF, Ding SL, Lee WH: Induction of Proteinuria by Adriamycin or Bovine Serum-Albumin in the Mouse. Nephron. 1995, 69: 293-300.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3