Author:
Zhou Yi,Echouffo-Tcheugui Justin B,Gu Jian-jun,Ruan Xiao-nan,Zhao Gen-ming,Xu Wang-hong,Yang Li-ming,Zhang Hong,Qiu Hua,Narayan K M Venkat,Sun Qiao
Abstract
Abstract
Background
Few population-based studies have examined the relationship between glycemic status and chronic kidney disease (CKD) in China. We examined the prevalence of CKD across categories of glycemia [diagnosed diabetes, undiagnosed diabetes (fasting plasma glucose [FPG] ≥ 126 mg/dL), prediabetes (FPG 100–126 mg/dL) and normal glycemia (FPG <100 mg/dL)] among Chinese adults and assessed the relative contribution of dysglycemia (prediabetes and/or diabetes) to the burden of CKD.
Methods
5,584 Chinese adults aged 20–79 years were selected from the Pudong New Area of Shanghai through a multistage random sampling. Demographic and lifestyle characteristics, anthropometry and blood pressure were measured. Biochemical assays included FPG, serum creatinine and lipids, urinary creatinine and albumin. Prevalence of albuminuria [urine albumin-to-creatinine ratio (ACR) ≥ 30 mg/g], decreased kidney function and CKD (either decreased kidney function or albuminuria) across levels of glycemia were estimated.
Results
The prevalence of albuminuria, decreased kidney function and CKD each increased with higher glycemic levels (P < 0.001). Based on the MDRD Study equation, the unadjusted CKD prevalence was 30.9%, 28.5%, 14.1% and 9.2% in those with diagnosed diabetes, undiagnosed diabetes, prediabetes and normoglycemia, respectively. The corresponding age-, gender- and hypertension-adjusted CKD prevalence were 25.8%, 25.0%, 12.3% and 9.1%, respectively. In a multivariable analysis, the factors associated with CKD were hypertension (Odds ratio [OR] 1.70, 95% confidence interval [CI]: 1.42-2.03), dysglycemia (OR 1.65, 95% CI: 1.39-1.95), female gender (OR 1.48, 95% CI: 1.25-1.75), higher triglycerides (OR 1.14, 95% CI: 1.08-1.20 per mmol/L), higher body mass index (OR 1.08, 95% CI: 1.05-1.10 per kg/m2), and older age (OR 1.02, 95% CI: 1.01 -1.03 per year). The population attributable risks (PARs) associated with diabetes, prediabetes, dysglycemia (diabetes and prediabetes) and hypertension were 18.4%, 19.7%, 30.3% and 44.5% for CKD as defined by the MDRD study equation, and 15.8%, 24.4%, 29.2% and 10.0% with the CKD-EPI equation. Estimates of prevalence and ORs of the relative contribution of various risk factors to CKD obtained with the CKD-EPI equation were similar.
Conclusions
As much as 30% of the CKD burden may be associated with dysglycemia among Chinese adults, independent of age, gender and hypertension status. Prevention and control of diabetes and prediabetes should be a high priority in reducing the CKD burden in China.
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW: Chronic kidney disease: global dimension and perspectives. Lancet. 2013, 382 (9888): 260-272. 10.1016/S0140-6736(13)60687-X.
2. Hunsicker LG: The consequences and costs of chronic kidney disease before ESRD. J Am Soc Nephrol. 2004, 15 (5): 1363-1364. 10.1097/01.ASN.0000126069.68755.99.
3. Whiting DR, Guariguata L, Weil C, Shaw J: IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011, 94 (3): 311-321. 10.1016/j.diabres.2011.10.029.
4. Ronald P, Abhishek K, Mary A, Lynar L: Chronic kidney disease and diabetes. Maturitas. 2012, 2 (71): 94-103.
5. Hallan SI, Stevens P: Screening for chronic kidney disease: which strategy?. J Nephrol. 2010, 23 (2): 147-155.