Changes in canopy cover and forest structure following dormant season and early growing season prescribed burns in the Southern Appalachians, USA

Author:

Melcher Allison L.,Hagan DonaldORCID,Barrett Kyle,Ross Beth,Lorber Jean

Abstract

Abstract Background Fire seasonality is important for forest managers to consider when restoring historical disturbance regimes and recovering native ecosystem structure and composition, but it is less understood and less frequently studied than other aspects of fire ecology. In the Southern Appalachians, historical fires likely occurred most often in late spring and early summer when fuels were dry and canopy conditions were conducive to fire; however, most prescribed fires today occur during the dormant season (January–March). Because fire behavior can vary seasonally, it is important for forest managers to understand the practical applications of fire season in order to burn at a time that meets management objectives. Therefore, we investigated the effect of fire seasonality on forest structure and land cover diversity in the Southern Appalachians. Results Using a complete randomized block design, we analyzed leaf-on canopy cover imagery with ArcGIS Pro to compare canopy cover and forest structure between growing and dormant season burns. We compared imagery between three blocks, each with an unburned control unit, dormant season burn, and growing season burn, and found an average of 8.84% (SE = ± 1.46) reduction in canopy cover in growing season treatment units from pre-burn (2017) to post-burn (2019) compared to 5.21% (SE = ± 1.51) reduction in dormant season treatment units and 0.01% (SE = ± 0.009) reduction in unburned controls. Canopy cover reductions corresponded with substantial increases in early- and mid-successional habitat, edge length, and land cover diversity — especially in growing season burn treatment units. Conclusions Our results indicate that early growing season burns are more effective than dormant season burns at enhancing forest structural heterogeneity. Early growing season burns, therefore, may be a viable option for forest managers looking to expand their burn season and achieve restoration and management goals faster than traditional dormant season burns.

Funder

Joint Fire Science Program

NIFA/USDA

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3