3D imaging as a method of measuring serotiny

Author:

van Mantgem Carolyn F.ORCID

Abstract

Abstract Background Serotiny, or pyriscence, refers to delayed seed dissemination within plants and plays an important role in the population dynamics of species following fire. Accurately understanding the variation in serotiny is crucial to predicting ecosystem responses to changing fire regimes. Three-dimensional (3D) cone surface area is one critical trait that can be used to characterize responses in serotinous species following fire, yet approaches to accurately measure cone surface area are limited. Cone surface area in regards to this paper is the total area of all surfaces of the cone. Past studies have relied on visual estimation to determine the openness of cones or to identify when cones become open. Subjective assessments of cone opening may be insufficient to adequately characterize cone responses to fire. In this study, I demonstrate the effectiveness of 3D modeling using a readily available phone camera and applications (Polycam, Blender) to quantify differences in 3D surface area of cones before and after heating treatments by comparing two serotinous conifer species, Monterey cypress (Hesperocyparis macrocarpa) and bishop pine (Pinus muricata). Results Bishop pine had an average cone surface area increase of 175.7% while Monterey cypress had an average cone surface area increase of 43.5%. Paired t-tests showed that cone surface area significantly increased following heating for both species. Conclusions Bishop pine showed a much greater cone surface area change relative to Monterey cypress. 3D imaging with the phone application, Polycam, proved to be a successful method of quantifying cone opening, creating a mesh that could be measured with the post-image processing software, Blender. A mesh can be defined as a digital 3D representation of an object made up of connected vertices that create edges and faces. Using a readily available phone camera, one can create an accurate 3D model to measure changes in the surface area of cones before and after fire. Simple methods for quantifying serotiny, such as demonstrated here, allow for improved understanding and predictions of how species respond to fire and other environmental triggers but require further investigation including, but not limited to, comparisons between serotinous species, facultative serotinous species, and non-serotinous species.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3