Fuels change quickly after California drought and bark beetle outbreaks with implications for potential fire behavior and emissions

Author:

Reed Charlotte C.ORCID,Hood Sharon M.,Cluck Daniel R.,Smith Sheri L.

Abstract

Abstract Background An extreme drought from 2012–2016 and concurrent bark beetle outbreaks in California, USA resulted in widespread tree mortality. We followed changes in tree mortality, stand structure, and surface and canopy fuels over four years after the peak of mortality in Sierra mixed conifer and pinyon pine (Pinus monophylla) forests to examine patterns of mortality, needle retention after death, and snag fall across tree species. We then investigated how the tree mortality event affected surface and canopy fuel loading and potential impacts on fire hazard and emissions. Results Drought and beetle-related tree mortality shifted mortality patterns to be more evenly distributed across size classes and concentrated in pines. Substantial changes to surface fuel loading, stand density, canopy fuel loads, and potential wildfire emissions occurred within four years following peak levels of tree mortality, with the largest changes related to increases in coarse woody debris. Nearly complete needle fall occurred within four years of mortality for all species except red fir (Abies magnifica). Pine species and incense cedar (Calocedrus decurrens) snags fell more quickly than fir species. Potential fire behavior modelling suggested that crowning and torching hazard decreased as trees dropped dead needles and fell, but as canopy fuels were transferred to surface fuels, potential for smoldering combustion increased, causing greater emissions. Conclusions Our study increases understanding of how extreme tree mortality events caused by concurrent disturbances alter canopy and surface fuel loading and have the potential to affect fire behavior and emissions in two compositionally different seasonally dry forest types. After a major tree mortality event, high canopy fuel flammability may only last a few years, but surface fuels can increase considerably over the same time period in these forest types. The accumulation of coarse woody surface fuels resulting from multi-year drought and concurrent bark beetle outbreaks combined with the increasing frequency of drought in the western U.S. have the potential to lead to heavy and dry fuel loads that under certain weather conditions may result in more extreme fire behavior and severe effects, particularly in forest types where decades of successful fire suppression has caused forest densification.

Funder

USDA Forest Service Forest Health Protection

USDA Forest Service Pacific Southwest Region

USDA Forest Service Rocky Mountain Research Station

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3