Fuel treatment response groups for fire-prone sagebrush landscapes

Author:

Chambers Jeanne C.ORCID,Brown Jessi L.,Reeves Matthew C.,Strand Eva K.,Ellsworth Lisa M.,Tortorelli Claire M.,Urza Alexandra K.,Short Karen C.

Abstract

Abstract Background Sagebrush shrublands in the Great Basin, USA, are experiencing widespread increases in wildfire size and area burned resulting in new policies and funding to implement fuel treatments. However, we lack the spatial data needed to optimize the types and locations of fuel treatments across large landscapes and mitigate fire risk. To address this, we developed treatment response groups (TRGs)—sagebrush and pinyon-juniper vegetation associations that differ in resilience to fire and resistance to annual grass invasion (R&R) and thus responses to fuel treatments. Results We developed spatial layers of the dominant sagebrush associations by overlaying LANDFIRE Existing Vegetation Type, Biophysical Setting, and Mapping Zone, extracting vegetation plot data from the LANDFIRE 2016 LF Reference Database for each combination, and identifying associated sagebrush, grass, shrub, and tree species. We derived spatial layers of pinyon-juniper (PJ) cover and expansion phase within the sagebrush associations from the Rangeland Analysis Platform and identified persistent PJ woodlands from the LANDFIRE Biophysical Setting. TRGs were created by overlaying dominant sagebrush associations, with and without PJ expansion, and new indicators of resilience and resistance. We assigned appropriate woody fuel treatments to the TRGs based on prior research on treatment responses. The potential area to receive woody fuel treatments was constrained to 52,940 km2 (18.4%) of the dominant sagebrush associations (272,501 km2) largely because of extensive areas of low R&R (68.9%), which respond poorly and were not assigned treatments. Prescribed fire was assigned to big sagebrush associations with moderate or higher resilience and moderately low or higher resistance (14.2%) due to higher productivity, fuels, and recovery potential. Mechanical treatments were assigned to big sagebrush associations with moderately low resilience and to low, black, and mixed low sagebrush associations with moderately low or higher R&R (4.2%) due to lower productivity, fuels, and recovery potential. Persistent PJ woodlands represent high value resources and were not assigned treatments (9%). Conclusions Mapped TRGs can help identify the dominant sagebrush associations and determine appropriate fuel treatments at intermediate scales and provide the basis for quantitative wildfire risk assessments and outcome-based scenario planning to prioritize fuel treatment investments at large landscape scales.

Funder

Joint Fire Science Program

Rocky Mountain Research Station

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3