Abstract
Abstract
Background
This paper presents an analysis of fire regimes in the poorly studied Angolan catchment of the Okavango Delta in Botswana. We used MODIS data to examine the frequency and seasonality of fires over 20 years (from 2000 to 2020) in three dominant vegetation types (miombo woodlands, open woodlands and grasslands, and short closed to open bushlands), and in areas where people were present, and where they were absent.
Results
The median fire return intervals for both open woodlands and grasslands and short bushlands were relatively short (1.9 and 2.2 years respectively). In miombo woodlands, fires were less frequent (median return periods of 4.5 years). Human population density had no discernible effect on the fire return intervals, but about 14% of the miombo woodlands experienced no fires over 20 years. Ongoing shifting cultivation within miombo woodlands has led to structural changes and the introduction of fire into this vegetation type where fires were rare or absent in the past. About 12% of the miombo did not burn during the period examined where people were present, whereas close to 20% of the sites remained unburnt where people were absent. This suggests that people did not change the fire return interval in any of the vegetation types studied, but that they altered the amount of the landscape that is flammable in miombo vegetation. Fires occurred between June and September, with a peak in the late dry season (August and September).
Conclusions
Historical research indicates that late dry-season fires are detrimental to miombo woodlands, and our analysis suggests that degradation in parts of the catchment has led to the introduction of fire to this previously fire-free and fire-sensitive vegetation type. Deforestation of miombo woodlands, and the consequent introduction of fire, is a cause for concern with respect to the ecological stability of the Okavango Delta. Managers should therefore aim to protect the remaining closed-canopy miombo stands from further clearing and to attempt to shift the timing of burns to the early dry season to reduce their intensity.
Funder
National Geographic Society Education Foundation
Publisher
Springer Science and Business Media LLC
Subject
Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry
Reference55 articles.
1. Archibald, S., H. Beckett, W.J. Bond, C. Coetsee, D.J. Druce, and A.C. Staver. 2017. Interactions between fire and ecosystem processes. In Conserving Africa’s mega-diversity in the Anthropocene: The Hluhluwe-iMfolozi Park story, ed. J.P.G.M. Cromsigt, S. Archibald, and N. Owen-Smith, 233–261. Cambridge: Cambridge University Press.
2. Archibald, S., R.J. Scholes, D.P. Roy, G. Roberts, and L. Boschetti. 2010. Southern African fire regimes as revealed by remote sensing. International Journal of Wildland Fire 19: 861–878.
3. Archibald, S.A., D.P. Roy, B.W. van Wilgen, and R.J. Scholes. 2009. What limits fire? An examination of drivers of burnt area in sub-equatorial Africa. Global Change Biology 15: 613–630.
4. Barber-James, H., and I. Ferreira. 2019. The Mayflies (Ephemeroptera) of Angola—New species and distribution records from previously unchartered waters, with a provisional species checklist. Zoosymposia 16: 124–138.
5. Blumenfeld, S., C. Lu, T. Christophersen, and D. Coates. 2009. Water, wetlands and forests. A review of ecological, economic and policy linkages. CBD Technical Series No. 47. Montreal and Gland: Secretariat of the Convention on Biological Diversity and Secretariat of the Ramsar Convention on Wetlands.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献