Impact of wildfire size on snowshoe hare relative abundance in southern British Columbia, Canada

Author:

Hutchen Jenna,Hodges Karen E.ORCID

Abstract

Abstract Background Large wildfires result in more heterogeneous fire scars than do smaller fires because of differences in landscape context and high variability in burn intensity and severity. Previous research on mammal response to wildfire has often considered all fires as comparable disturbances regardless of size. Here, we explicitly examine whether fire size affects relative abundances of a keystone herbivore, snowshoe hare (Lepus americanus Erxleben, 1777), in regenerating stands of the same age. We surveyed vegetation and fecal pellets of snowshoe hares in nine 13-year-old wildfires, specifically, three fires in three size categories—small (80 to 200 ha), medium (1000 to 5000 ha), and large (>10 000 ha)—and in mature forests in southern British Columbia, Canada. Results Snowshoe hare density was low (0.4 hares ha−1), but hares were present at 57% of mature sites. Hares were absent from all areas where small fires had burned and were found in only one medium area post fire (0.2 hares ha−1). Hares were found within the fire scars of all three large burned areas, and with much higher numbers (3.8 hares ha−1) than in the medium fire area or mature forest. Snowshoe hare abundance was highly correlated with the number of sapling trees, especially lodgepole pine (Pinus contorta Douglas ex Loudon). Sapling densities were highly variable, but dense stands of saplings were found only in burn scars from large wildfires. Conclusions Fire size is an important predictor of snowshoe hare relative abundance in areas that are regenerating post fire; fires of different sizes are not comparable disturbances. Specifically, the post-fire heterogeneity after large fires enabled both the highest hare numbers as well as patches with no hares. These results suggest that forest and wildlife managers should protect areas with dense regeneration post fire, as these sites are necessary for hares after large wildfires.

Funder

Natural Sciences and Engineering Research Council

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3