Abstract
Abstract
Background
Projections for the future health and abundance of whitebark pine (Pinus albicaulis Engelm.) populations in western North America are dire. Not only has the species been declining due to the combined effects of fire exclusion policies, mountain pine beetle (Dendroctonus ponderosae Hopkins 1902) outbreaks, and white pine blister rust (Cronartium ribicola J.C. Fisch), many are predicting that climate change will amplify these effects and whitebark pine habitat may be lost in many areas. One method to evaluate the validity of future predictions is to examine current migration patterns of whitebark pine into surrounding non-forested areas. In this paper, we documented the findings of a case study surveying the encroachment of whitebark pine into adjacent lower-elevation sagebrush grasslands and higher-elevation subalpine meadows in southwestern Montana, USA.
Results
We found abundant evidence of whitebark pine trees (>40 trees ha−1) in sagebrush grasslands below the mature seed source, but there was no evidence of any whitebark pine regeneration in subalpine meadows above the seed-source stand.
Conclusions
These results are in stark contrast to the findings of statistical modeling studies that predict that whitebark pine will expand into higher-elevation areas as a response to climate change. We believe that the reason for this low-elevation encroachment may be in response to fire exclusion rather than climate change. Although observations in this case study are for a limited geographic area, they do serve to illustrate the complexity of predicting ecological responses of tree species to climate change.
Funder
U.S. Bureau of Land Management
USDA Forest Service Rocky Mountain Research Station
Publisher
Springer Science and Business Media LLC
Subject
Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry
Reference53 articles.
1. Abatzoglou, J.T., and A.P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113: 11770–11775 https://doi.org/10.1073/pnas.1607171113.
2. Allen, C.D., A.K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D.D. Breshears, E.H.(.T.). Hogg, P. Gonzalez, R. Fensham, Z. Zhang, J. Castro, N. Demidova, J.-H. Lim, G. Allard, S.W. Running, A. Semerci, and N. Cobb. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684 https://doi.org/10.1016/j.foreco.2009.09.001.
3. Arno, S.A. 2001. Community types and natural disturbance processes. In Whitebark pine communities: ecology and restoration, ed. D.F. Tomback, S.A. Arno, and R.E. Keane, 74–89. Washington, D.C.: Island Press.
4. Arno, S.F. 1986. Whitebark pine cone crops—a diminishing source of wildlife food? Western Journal of Applied Forestry 1: 92–94 https://doi.org/10.1093/wjaf/1.3.92.
5. Arno, S.F., and G.E. Gruell. 1983. Fire history at the forest—grassland ecotone in southwestern Montana. Journal of Range Management 36(3):332–336 https://doi.org/10.2307/3898481.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献