Fire severity influences large wood and stream ecosystem responses in western Oregon watersheds

Author:

Coble Ashley A.ORCID,Penaluna Brooke E.ORCID,Six Laura J.,Verschuyl Jake

Abstract

Abstract Background Wildfire is a landscape disturbance important for stream ecosystems and the recruitment of large wood (LW; LW describes wood in streams) into streams, with post-fire management also playing a role. We used a stratified random sample of 4th-order watersheds that represent a range of pre-fire stand age and fire severity from unburned to entirely burned watersheds to 1) determine whether watershed stand age (pre-fire) or fire severity affected riparian overstory survival, riparian coarse wood (CW; CW describes wood in riparian areas), LW, or in-stream physical, chemical, and biological responses; and 2) identify relationships of LW with riparian vegetation and in-stream physical, chemical, and biological factors. Results At higher fire severities, LW and CW diameter was smaller, but volume did not change in the first year post-fire. Larger size of CW in riparian areas versus LW in streams suggests potential future recruitment of larger-diameter wood into streams from riparian zones in severely burned watersheds. Fire severity exerted strong control on stream responses across watersheds, explaining more of the variation than stand age. At higher fire severities, riparian tree mortality, salvage logging, light, dissolved organic matter (DOM) concentrations, and fish densities were higher, whereas canopy cover, LW diameter, macroinvertebrate diversity, and amphibian density were lower. In watersheds with older stand ages, elevation and mean annual precipitation were greater but mean annual temperature, specific ultra-violet absorption at 254 nm, and phosphorus concentrations were lower. Overstory mortality in burned riparian areas was lower for red alder (12%) than western redcedar (69%). Conclusions Our results link forested streams, fire, and LW by identifying key relationships that change with fire severity and/or watershed stand age. Severe fires burn more overstory riparian vegetation, leading to increased light, DOM concentrations, and macroinvertebrate and fish densities, along with reduced canopy cover, LW diameter, macroinvertebrate diversity, and amphibian densities. We highlight an important function of red alder in riparian zones—as a fire-resistant species, it may help facilitate a more rapid recovery for streams in fire-prone landscapes. Continued comprehensive aquatic and riparian ecosystem monitoring of these watersheds will aid in understanding long-term effects of post-fire management activities (salvage logging) on aquatic ecosystems.

Funder

NCASI

Weyerhaeuser Company

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3