Modeling spatial patterns of longleaf pine needle dispersal using long-term data

Author:

Blaydes Suzanne H.ORCID,Cannon Jeffery B.,Aubrey Doug P.

Abstract

Abstract Background Predicting patterns of fire behavior and effects in frequent fire forests relies on an understanding of fine-scale spatial patterns of available fuels. Leaf litter is a significant canopy-derived fine fuel in fire-maintained forests. Litter dispersal is dependent on foliage production, stand structure, and wind direction, but the relative importance of these factors is unknown. Results Using a 10-year litterfall dataset collected within eighteen 4-ha longleaf pine (Pinus palustris Mill.) plots varying in canopy spatial pattern, we compared four spatially explicit models of annual needle litter dispersal: a model based only on basal area, an overstory abundance index (OAI) model, both isotropic and anisotropic litter kernel models, and a null model that assumed no spatial relationship. The best model was the anisotropic model (R= 0.656) that incorporated tree size, location, and prevailing wind direction, followed by the isotropic model (R2 = 0.612), basal area model (R2 = 0.488), OAI model (R2 = 0.416), and the null model (R2 = 0.08). Conclusions As with previous studies, the predictive capability of the litter models was robust when internally validated with a subset of the original dataset (R2 = 0.196–0.549); however, the models were less robust when challenged with an independent dataset (R2 = 0.122–0.319) from novel forest stands. Our model validation underscores the need for rigorous tests with independent, external datasets to confirm the validity of litter dispersal models. These models can be used in the application of prescribed fire to estimate fuel distribution and loading, as well as aid in the fine tuning of fire behavior models to better understand fire outcomes across a range of forest canopy structures.

Funder

National Institute of Food and Agriculture

US Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3