Fire history and vegetation data reveal ecological benefits of recent mixed-severity fires in the Cumberland Mountains, West Virginia, USA

Author:

Saladyga ThomasORCID,Palmquist Kyle A.,Bacon Cassie M.

Abstract

Abstract Background Without periodic fire, fire-adapted plant communities across the Central Hardwood Forest Region (CHF) in the USA have undergone significant changes in forest structure and species composition, most notably a decrease in oak regeneration and herbaceous diversity and an increase in shade-tolerant, fire-sensitive tree species. In this study, we conducted a comparative analysis of two mixed pine-oak (Pinus-Quercus) forests with different land management histories in the Cumberland Mountains of southern West Virginia where fire ecology and fire effects are understudied. We reconstructed the fire history of both sites from fire-scarred shortleaf pine (Pinus echinata Mill.) and pitch pine (Pinus rigida Mill.) trees to describe variation in the fire regimes over time. We also made plant community measurements that spatially coincided with fire-scarred pines to assess present-day plant community structure in relation to recent fire history. Results Before 1970, fires at Hite Fork and Wall Fork occurred frequently and almost exclusively in the dormant season, every 7–8 years on average. The fire regimes diverged in the Post-Industrial era (1970–2020), during which there was a single fire at Wall Fork, while six major fires, scarring more than 40% of sampled trees, occurred between 1985 and 2017 at Hite Fork. Four of these dormant-season fires correspond to late fall incendiary fires in the observational record. These differences in recent fire history had large effects on plant community structure. Recent mixed-severity fires at Hite Fork likely caused mortality of pole-sized trees and opened the canopy, creating conditions favorable for pine recruitment and resulted in significantly higher species richness in the herbaceous layer compared to Wall Fork, which exhibited the effects of mesophication. Conclusions Our results suggest that frequent mixed-severity fire in pine-oak forests of the Cumberland Mountains can meet management objectives by reducing mesophytic tree abundance, increasing herbaceous diversity and pine recruitment, and generally promoting forest heterogeneity.

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3