A spatially explicit analytical framework to assess wildfire risks on brown bear habitat and corridors in conservation areas

Author:

Khosravi RasoulORCID,Pourghasemi Hamid Reza,Adavoudi Roya,Julaie Leila,Wan Ho Yi

Abstract

Abstract Background Humans have altered fire regimes across ecosystems due to climate change, land use change, and increasing ignition. Unprecedented shifts in fire regimes affect animals and contribute to habitat displacement, reduced movement, and increased mortality risk. Mitigating these effects require the identification of habitats that are susceptible to wildfires. We designed an analytical framework that incorporates fire risk mapping with species distribution modeling to identify key habitats of Ursus arctos with high probability of fire in Iran. We applied the random forest algorithm for fire risk mapping. We also modeled brown bear habitats and predicted connectivity between them using species distribution models and connectivity analysis, respectively. Finally, the fire risk map, critical habitats, and corridors were overlaid to spatially identify habitats and corridors that are at high risk of fire. Results We identified 17 critical habitats with 5245 km2 of corridors connecting them, 40.06% and 11.34% of which are covered by conservation areas, respectively. Our analysis showed that 35.65% of key habitats and 23.56% of corridors are at high risk of fire. Conclusions Since bears habitat in this semi-arid landscape rely on forests at higher altitudes, it is likely that shifting fire regimes due to changing climate and land use modifications reduce the extent of habitats in the future. While it is not well known how fire affects bears, identifying its key habitat where wildfires are likely to occur is the first step to manage potential impacts from increasing wildfires on this species.

Funder

iran national science foundation, presidency of islamic republic of iran

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3