Time since fire shapes plant immaturity risk across fire severity classes

Author:

Plumanns-Pouton Ella S.ORCID,Swan Matthew H.,Penman Trent D.,Collins Luke,Kelly Luke T.

Abstract

Abstract Background When fire intervals are shorter than the time required for plants to reproduce, plant populations are threatened by “immaturity risk.” Therefore, understanding how the time between fires influences plants can inform ecosystem management. Quantifying periods of immaturity risk requires investigating the influence of fire intervals across plant life stages, but most studies are indiscriminate of maturity. As fire regimes are multidimensional, it is also important to consider other characteristics of fires such as severity. We conducted a field study in heathy woodland that investigated how fire severity and fire interval influence immaturity risk to serotinous resprouter species, by examining if fire severity interacts with the time since the fire to influence the occurrence of mature individuals and relative abundance of three species: silver banksia (Banksia marginata Cav.), prickly teatree (Leptospermum continentale Joy Thomps), and heath teatree (Leptospermum myrsinoides Schitdl). Results Regression modeling revealed a strong, positive influence of time since the last fire on the proportion of quadrats at a site with mature plants, for all three species. We only detected a small and uncertain influence of fire severity on the proportion of quadrats with mature heath and prickly teatree, and did not observe an effect of fire severity on the maturity of silver banksia. Interestingly, no relationships were observed between time since fire and the relative abundance of plants. That is, only when plant life stages were considered did we detect an effect of fire on plants. Populations of the three species were mostly immature in the first 7 years post-fire, suggesting if sites were uniformly burnt in this time frame, there could be increased risk of local extinctions. Conclusions Our study highlights the importance of examining population processes, such as reproduction, in addition to plant relative abundance. Surprisingly, we did not detect strong differences in plant maturation across fire severity classes; low occurrence of mature plants in recently burnt areas indicated that immaturity risk was high, regardless of fire severity. Ecological studies that distinguish between plant life stages will help to predict the impacts of fire on populations and enhance decision-making. We recommend fire intervals of ≥ 8 years to protect serotinous resprouter plants in heathy woodland vegetation of southern Australia.

Funder

Bushfire and Natural Hazards Cooperative Research Centre

Department of Environment, Land, Water and Planning, State Government of Victoria

Holsworth Wildlife Research Endowment

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3