Microenvironment characteristics and early regeneration after the 2018 Spring Creek Wildfire and post-fire logging in Colorado, USA

Author:

Wooten Jesse T.,Stevens-Rumann Camille S.ORCID,Schapira Zoe H.,Rocca Monique E.

Abstract

Abstract Background Wildfires are increasing in size and severity in forests of the western USA, driven by climate change and land management practices during the 20th century. Altered fire regimes have resulted in a greater need for knowledge on best practices for managing burned landscapes, especially in instances where a return to a previous forested ecosystem is desired. We examined a large wildfire from 2018 in southern Colorado to understand how fire severity and post-fire logging influenced stand structure, fuels, vegetation, and soil microsite conditions. Results Two years post-fire and 1 year post logging, there was no difference in understory vegetation response. Logged plots demonstrated lower daily average temperature and minimum soil moisture and higher fuel loading across most fuel size classes relative to unlogged plots, which also corresponded with a loss of dead standing wood and little to no canopy cover. Early post-fire conifer regeneration was low across all plots, but lower soil moisture and higher soil temperature negatively impacted the density of regeneration. Conclusions Successful tree regeneration is mediated by multiple factors from the microsite to landscape scale. Here, we demonstrate the importance of those microsite conditions such as soil moisture and temperature in predicting conifer tree establishment in the early post-fire period. Careful consideration of soil impacts and the associated changes to forest conditions should be taken when conducting post-fire logging to prevent detrimental effects on microsite conditions and forest recovery.

Funder

Colorado Mountain Club

Colorado State University

Joint Fire Science Program

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3