Abstract
Abstract
Background
Wildfires are increasing in size and severity in forests of the western USA, driven by climate change and land management practices during the 20th century. Altered fire regimes have resulted in a greater need for knowledge on best practices for managing burned landscapes, especially in instances where a return to a previous forested ecosystem is desired. We examined a large wildfire from 2018 in southern Colorado to understand how fire severity and post-fire logging influenced stand structure, fuels, vegetation, and soil microsite conditions.
Results
Two years post-fire and 1 year post logging, there was no difference in understory vegetation response. Logged plots demonstrated lower daily average temperature and minimum soil moisture and higher fuel loading across most fuel size classes relative to unlogged plots, which also corresponded with a loss of dead standing wood and little to no canopy cover. Early post-fire conifer regeneration was low across all plots, but lower soil moisture and higher soil temperature negatively impacted the density of regeneration.
Conclusions
Successful tree regeneration is mediated by multiple factors from the microsite to landscape scale. Here, we demonstrate the importance of those microsite conditions such as soil moisture and temperature in predicting conifer tree establishment in the early post-fire period. Careful consideration of soil impacts and the associated changes to forest conditions should be taken when conducting post-fire logging to prevent detrimental effects on microsite conditions and forest recovery.
Funder
Colorado Mountain Club
Colorado State University
Joint Fire Science Program
Publisher
Springer Science and Business Media LLC
Subject
Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献