A genetic epidemiological model to describe resistance to an endemic bacterial disease in livestock: application to footrot in sheep

Author:

Nieuwhof Gert Jan,Conington Joanne,Bishop Stephen C

Abstract

Abstract Selection for resistance to an infectious disease not only improves resistance of animals, but also has the potential to reduce the pathogen challenge to contemporaries, especially when the population under selection is the main reservoir of pathogens. A model was developed to describe the epidemiological cycle that animals in affected populations typically go through; viz. susceptible, latently infected, diseased and infectious, recovered and reverting back to susceptible through loss of immunity, and the rates at which animals move from one state to the next, along with effects on the pathogen population. The equilibrium prevalence was estimated as a function of these rates. The likely response to selection for increased resistance was predicted using a quantitative genetic threshold model and also by using epidemiological models with and without reduced pathogen burden. Models were standardised to achieve the same genetic response to one round of selection. The model was then applied to footrot in sheep. The only epidemiological parameters with major impacts for prediction of genetic progress were the rate at which animals recover from infection and the notional reproductive rate of the pathogen. There are few published estimates for these parameters, but plausible values for the rate of recovery would result in a response to selection, in terms of changes in the observed prevalence, double that predicted by purely genetic models in the medium term (e.g. 2–5 generations).

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Reference24 articles.

1. Bennett RM, IJpelaar ACE: Economic assessment of livestock diseases in Great Britain. Final Report to the Department for Environment, Food and Rural Affairs. 2003

2. Archibald AL, Bishop SC: S11: State-of-Science Review – Host Genetics and Engineering: the genetics of host responses to infectious diseases in farmed animals. Foresight project 'Infectious Diseases: preparing for the future'. 2006, Department of Trade and Industry, UK

3. Axford RFE, Bishop SC, Nicholas FW, Owen JB: Breeding for disease resistance in farm animals. 2000, CABI publishing, 2

4. Bishop SC, Stear MJ: Modelling host genetics and resistance to infectious diseases: understanding and controlling infections. Vet Parasitol. 2003, 115: 147-166. 10.1016/S0304-4017(03)00204-8.

5. Anderson RM, May RM: Infectious diseases of humans, dynamics and control. 1991, Oxford University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3