COVID-19 data are messy: analytic methods for rigorous impact analyses with imperfect data

Author:

Stoto Michael A.,Woolverton Abbey,Kraemer John,Barlow Pepita,Clarke Michael

Abstract

Abstract Background The COVID-19 pandemic has led to an avalanche of scientific studies, drawing on many different types of data. However, studies addressing the effectiveness of government actions against COVID-19, especially non-pharmaceutical interventions, often exhibit data problems that threaten the validity of their results. This review is thus intended to help epidemiologists and other researchers identify a set of data issues that, in our view, must be addressed in order for their work to be credible. We further intend to help journal editors and peer reviewers when evaluating studies, to apprise policy-makers, journalists, and other research consumers about the strengths and weaknesses of published studies, and to inform the wider debate about the scientific quality of COVID-19 research. Results To this end, we describe common challenges in the collection, reporting, and use of epidemiologic, policy, and other data, including completeness and representativeness of outcomes data; their comparability over time and among jurisdictions; the adequacy of policy variables and data on intermediate outcomes such as mobility and mask use; and a mismatch between level of intervention and outcome variables. We urge researchers to think critically about potential problems with the COVID-19 data sources over the specific time periods and particular locations they have chosen to analyze, and to choose not only appropriate study designs but also to conduct appropriate checks and sensitivity analyses to investigate the impact(s) of potential threats on study findings. Conclusions In an effort to encourage high quality research, we provide recommendations on how to address the issues we identify. Our first recommendation is for researchers to choose an appropriate design (and the data it requires). This review describes considerations and issues in order to identify the strongest analytical designs and demonstrates how interrupted time-series and comparative longitudinal studies can be particularly useful. Furthermore, we recommend that researchers conduct checks or sensitivity analyses of the results to data source and design choices, which we illustrate. Regardless of the approaches taken, researchers should be explicit about the kind of data problems or other biases that the design choice and sensitivity analyses are addressing.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3