“Won’t get fooled again”: statistical fault detection in COVID-19 Latin American data

Author:

Figueiredo Filho Dalson,Silva LucasORCID,Medeiros Hugo

Abstract

Abstract Background Claims of inconsistency in epidemiological data have emerged for both developed and developing countries during the COVID-19 pandemic. Methods In this paper, we apply first-digit Newcomb-Benford Law (NBL) and Kullback-Leibler Divergence (KLD) to evaluate COVID-19 records reliability in all 20 Latin American countries. We replicate country-level aggregate information from Our World in Data. Results We find that official reports do not follow NBL’s theoretical expectations (n = 978; chi-square = 78.95; KS = 4.33, MD = 2.18; mantissa = .54; MAD = .02; DF = 12.75). KLD estimates indicate high divergence among countries, including some outliers. Conclusions This paper provides evidence that recorded COVID-19 cases in Latin America do not conform overall to NBL, which is a useful tool for detecting data manipulation. Our study suggests that further investigations should be made into surveillance systems that exhibit higher deviation from the theoretical distribution and divergence from other similar countries.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Health Policy

Reference60 articles.

1. WHO Coronavirus (COVID-19) Dashboard [Internet]. [cited 2021 Mar 8]. Available from: https://covid19.who.int.

2. Coronavirus Update (Live) [Internet]. [cited 2020 May 20]. Available from: https://www.worldometers.info/coronavirus/#countries.

3. COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center. [cited 2021 Mar 8]. Available from: https://coronavirus.jhu.edu/map.html.

4. Yang K. What can COVID-19 tell us about evidence-based management? Am. Rev. Public Adm. 2020 Aug 1;50(6–7):706–12.

5. Farhadi N, Lahooti H. Forensic analysis of COVID-19 data from 198 countries two years after the pandemic outbreak. COVID. 2022 Mar 30;2(4):472–84.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3