Abstract
Abstract
Introduction
Points of entry and other border regions educate, train, and exercise (ETEs) their staff to improve preparedness and response to cross-border health threats. However, no conclusive knowledge of these ETEs’ effectiveness exists. This study aimed to review the literature on ETEs in infectious disease control concerning their methods and effect, with an emphasis on cross-border settings and methods that enlarge ETEs’ reach.
Methodology
We systematically searched for studies in the databases Embase, Medline, Web of Science, PsycInfo, ERIC, and Cinahl. After successively screening titles and abstracts, full-texts, and citations, 62 studies were included using in- and exclusion criteria. Data were extracted using a data-extraction form. Quality assessment was performed. We developed a theoretical framework based on which we analyzed the ETE context (target group, recruitment, autonomy, training needs), input (topic, trainers, development and quality of materials), process (design, duration, interval, goals), evaluation (pre-, post- follow-up tests), and outcome (reaction, learning, behavior, and system).
Results
We found a limited number of published evaluations of ETEs in general (n = 62) and of cross-border settings (n = 5) in particular. The quality assessment resulted in seven ETE methodologies and 23 evaluations with a ‘good’ score. Both general studies and those in a cross-border setting contain a low-moderate detail level on context, input, and process. The evaluations were performed on reaction (n = 45), learning (n = 45), behavior (n = 9) and system (n = 4), mainly using pre- and post-tests (n = 22). Online learning methods have a high potential in enlarging the reach and are effective, particularly in combination with offline training. Training-of-trainer approaches are effective for learning; new ETEs were developed by 20–44% of participants until six months after the initial training.
Conclusion
Our study reveals a limited number of publications on ETEs in infectious disease control. Studies provide few details on methodology, and use mainly short-term evaluations and low level outcomes. We call for more extensive, higher-level evaluation standards of ETEs, and an easy and sustainable way to exchange evaluations within the workforce of infectious disease control in cross-border settings. The theoretical framework developed in this study could guide future development and evaluation of ETEs in infectious disease control.
Funder
Consumer Programme
Rijksinstituut voor Volksgezondheid en Milieu
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,Health Policy
Reference89 articles.
1. Fauci AS, Morens DM. The perpetual challenge of infectious diseases. N Engl J Med. 2012;366:454–61.
2. Goubar A, Bitar D, Cao WC, Feng D, Fang LQ, Desenclos JC. An approach to estimate the number of SARS cases imported by international air travel. Epidemiol Infect. 2009;137(7):1019–31 https://doi.org/10.1017/S0950268808001635 Epub 2008 Dec 15.
3. Jernigan DB. CDC COVID-19 Response Team. Update: public health response to the coronavirus disease 2019 outbreak – united states, February 24, 2020. MMWR. 2020;69(8):216–9.
4. Vogt TM, Guerra MA, Flagg EW, Ksjazek TG, Lowther SA, Arguin PM. Risk of severe acute respiratory syndrome-associated coronavirus transmission aboard commercial aircraft. J Travel Med. 2006;13(5):268–72.
5. World health Organization. International health regulations (2005). Geneva: World health Organization; 2008.