Predicting the number of COVID-19 infections and deaths in USA

Author:

Ebubeogu Amarachukwu FelixORCID,Ozigbu Chamberline Ekene,Maswadi Kholoud,Seixas Azizi,Ofem Paulinus,Conserve Donaldson F.

Abstract

Abstract Background Uncertainties surrounding the 2019 novel coronavirus (COVID-19) remain a major global health challenge and requires attention. Researchers and medical experts have made remarkable efforts to reduce the number of cases and prevent future outbreaks through vaccines and other measures. However, there is little evidence on how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection entropy can be applied in predicting the possible number of infections and deaths. In addition, more studies on how the COVID-19 infection density contributes to the rise in infections are needed. This study demonstrates how the SARS-COV-2 daily infection entropy can be applied in predicting the number of infections within a given period. In addition, the infection density within a given population attributes to an increase in the number of COVID-19 cases and, consequently, the new variants. Results Using the COVID-19 initial data reported by Johns Hopkins University, World Health Organization (WHO) and Global Initiative on Sharing All Influenza Data (GISAID), the result shows that the original SAR-COV-2 strain has R0<1 with an initial infection growth rate entropy of 9.11 bits for the United States (U.S.). At close proximity, the average infection time for an infected individual to infect others within a susceptible population is approximately 7 minutes. Assuming no vaccines were available, in the U.S., the number of infections could range between 41,220,199 and 82,440,398 in late March 2022 with approximately, 1,211,036 deaths. However, with the available vaccines, nearly 48 Million COVID-19 cases and 706, 437 deaths have been prevented. Conclusion The proposed technique will contribute to the ongoing investigation of the COVID-19 pandemic and a blueprint to address the uncertainties surrounding the pandemic.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Health Policy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3