Association between gait features assessed by artificial intelligent system and cognitive function decline in patients with silent cerebrovascular disease: study protocol of a multicenter prospective cohort study (ACCURATE-2)

Author:

Tang Yan-min,Fei Bei-ni,Li Xin,Zhao Jin,Zhang Wei,Qin Guo-you,Hu Min,Ding JingORCID,Wang Xin

Abstract

Abstract Background Gait disturbances may appear prior to cognitive dysfunction in the early stage of silent cerebrovascular disease (SCD). Subtle changes in gait characteristics may provide an early warning of later cognitive decline. Our team has proposed a vision-based artificial intelligent gait analyzer for the rapid detection of spatiotemporal parameters and walking pattern based on videos of the Timed Up and Go (TUG) test. The primary objective of this study is to investigate the relationship between gait features assessed by our artificial intelligent gait analyzer and cognitive function changes in patients with SCD. Methods This will be a multicenter prospective cohort study involving a total of 14 hospitals from Shanghai and Guizhou. One thousand and six hundred patients with SCD aged 60–85 years will be consecutively recruited. Eligible patients will undergo the intelligent gait assessment and neuropsychological evaluation at baseline and at 1-year follow-up. The intelligent gait analyzer will divide participant into normal gait group and abnormal gait group according to their walking performance in the TUG videos at baseline. All participants will be naturally observed during 1-year follow-up period. Primary outcome are the changes in Mini-Mental State Examination (MMSE) score. Secondary outcomes include the changes in intelligent gait spatiotemporal parameters (step length, gait speed, step frequency, step width, standing up time, and turning back time), the changes in scores on other neuropsychological tests (Montreal Cognitive Assessment, the Stroop Color Word Test, and Digit Span Test), falls events, and cerebrovascular events. We hypothesize that both groups will show a decline in MMSE score, but the decrease of MMSE score in the abnormal gait group will be more significant. Conclusion This study will be the first to explore the relationship between gait features assessed by an artificial intelligent gait analyzer and cognitive decline in patients with SCD. It will demonstrate whether subtle gait abnormalities detected by the artificial intelligent gait analyzer can act as a cognitive-related marker for patients with SCD. Trial registration This trial was registered at ClinicalTrials.gov (NCT04456348; 2 July 2020).

Funder

The National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3