Longitudinal functional and imaging outcome measures in FKRP limb-girdle muscular dystrophy

Author:

Leung Doris G.ORCID,Bocchieri Alex E.,Ahlawat Shivani,Jacobs Michael A.,Parekh Vishwa S.,Braverman Vladimir,Summerton Katherine,Mansour Jennifer,Bibat Genila,Morris Carl,Marraffino Shannon,Wagner Kathryn R.

Abstract

Abstract Background Pathogenic variants in the FKRP gene cause impaired glycosylation of α-dystroglycan in muscle, producing a limb-girdle muscular dystrophy with cardiomyopathy. Despite advances in understanding the pathophysiology of FKRP-associated myopathies, clinical research in the limb-girdle muscular dystrophies has been limited by the lack of normative biomarker data to gauge disease progression. Methods Participants in a phase 2 clinical trial were evaluated over a 4-month, untreated lead-in period to evaluate repeatability and to obtain normative data for timed function tests, strength tests, pulmonary function, and body composition using DEXA and whole-body MRI. Novel deep learning algorithms were used to analyze MRI scans and quantify muscle, fat, and intramuscular fat infiltration in the thighs. T-tests and signed rank tests were used to assess changes in these outcome measures. Results Nineteen participants were observed during the lead-in period for this trial. No significant changes were noted in the strength, pulmonary function, or body composition outcome measures over the 4-month observation period. One timed function measure, the 4-stair climb, showed a statistically significant difference over the observation period. Quantitative estimates of muscle, fat, and intramuscular fat infiltration from whole-body MRI corresponded significantly with DEXA estimates of body composition, strength, and timed function measures. Conclusions We describe normative data and repeatability performance for multiple physical function measures in an adult FKRP muscular dystrophy population. Our analysis indicates that deep learning algorithms can be used to quantify healthy and dystrophic muscle seen on whole-body imaging. Trial registration This study was retrospectively registered in clinicaltrials.gov (NCT02841267) on July 22, 2016 and data supporting this study has been submitted to this registry.

Funder

Pfizer, Inc.

Cure LGMD2I

LGMD2i Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3