Author:
Tang Lian,Wang Zhi-Bo,Ma Ling-Zhi,Cao Xi-Peng,Tan Lan,Tan Meng-Shan
Abstract
Abstract
Background
Clusterin is a multifunctional protein, which is associated with the pathogenesis and the development of Alzheimer’s disease (AD). Compared with normal controls, inconsistent results have yielded in previous studies for concentration of cerebrospinal fluid (CSF) clusterin in AD patients. We explored CSF clusterin levels in different pathological processes of AD.
Methods
Following the National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria, we employed on the levels of CSF Aβ42(A), phosphorylated-Tau (T), and total-tau (N). Based on previously published cutoffs and the close correlation between CSF p-tau and t-tau, 276 participants from the publicly available ADNI database with CSF biomarkers were divided into four groups: A-(TN)- (normal Aβ42 and normal p-tau and t-tau; n = 50), A+(TN)- (abnormal Aβ42 and normal p-tau and t-tau; n = 39), A+(TN) + (abnormal Aβ42 and abnormal p-tau or t-tau; n = 147), A-(TN) + (normal Aβ42 and abnormal p-tau or t-tau; n = 40). To assess CSF clusterin levels in AD continuum, intergroup differences in four groups were compared. Pairwise comparisons were conducted as appropriate followed by Bonferroni post hoc analyses. To further study the relationships between CSF clusterin levels and AD core pathological biomarkers, we employed multiple linear regression method in subgroups.
Results
Compared with the A-(TN)- group, CSF clusterin levels were decreased in A+ (TN)- group (P = 0.002 after Bonferroni correction), but increased in the A+(TN) + group and the A-(TN) + group (both P < 0.001 after Bonferroni correction). Moreover, we found CSF clusterin levels are positively associated with CSF Aβ42 (β = 0.040, P < 0. 001), CSF p-tau (β = 0.325, P < 0.001) and CSF t-tau (β = 0.346, P < 0.001).
Conclusions
Our results indicated that there are differences levels of CSF clusterin in different stages of AD pathology. The CSF clusterin level decreased at the early stage are related to abnormal Aβ pathology; and the increased levels are associated with tau pathology and neurodegeneration.
Publisher
Springer Science and Business Media LLC
Subject
Neurology (clinical),General Medicine
Reference40 articles.
1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. The Lancet. 2011;377(9770):1019–31.
2. Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease:implications for prevention trials. Neuron. 2014;84(3):608–22.
3. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16.
4. Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer’s Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci. 2019;13:164.
5. Rosenthal SL, Wang X, Demirci FY, Barmada MM, Ganguli M, Lopez OL, et al. Beta-Amyloid Toxicity Modifier Genes and the Risk of Alzheimer’s Disease. Am J Neurodegener Dis. 2012;1(2):191–8.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献