Modification of the height of a weight drop traumatic brain injury model that causes the formation of glial scar and cognitive impairment in rats

Author:

Wardhana Donny Wisnu,Yudhanto Hendy Setyo,Riawan Wibi,Khotimah Husnul,Permatasari Happy Kurnia,Nazwar Tommy Alfandy,Nurdiana Nurdiana

Abstract

Abstract Objective Traumatic brain injury (TBI) is a chronic, progressive condition associated with permanent disabilities, particularly cognitive impairments. Glial scar formation following TBI is considered a contributing factor to these persistent disabilities. Currently, limited research exists on pharmacological interventions targeting glial scar prevention that require a standard weight drop TBI model for glial scar formation. Since there is no established standard TBI model for glial scar formation, this study aims to validate and modify the height of the weight drop model to identify glial scar formation and cognitive impairments. Methods Fifteen male Sprague Dawley rats were randomly divided into sham, WD1, and WD2 groups. The weight drop model with a 10 g load was applied to the right exposed brain of the rats from a height of 5 cm (WD1) and 10 cm (WD2) using a modified Feeney’s weight drop device. Cognitive impairments were confirmed using the novel object recognition (NOR) test with ethovision software on day 15. Subsequently, the rats were decapitated on day 16, and GFAP immunohistochemical staining was performed to confirm the presence of glial scarring. Results The WD1 and WD2 groups exhibited a significant increase in glial scar formation compared to the sham group, with the WD2 group resulting in even more pronounced glial scar formation. Only the WD2 model caused statistically significant cognitive damage. The negative correlation coefficient indicates that an increase in GFAP + cells will decrease the cognitive function. Conclusion Modification of the height of the weight drop model, by dropping a weight of 10 g from a height of 10 cm (WD2 group) onto the right brain exposed of the rat has been proven to induce the formation of a glial scar and cognitive impairment.

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3