Morphometry of cerebral arterial bifurcations harbouring aneurysms: a case-control study

Author:

Ćmiel-Smorzyk K.,Kawlewska E.,Wolański W.,Hebda A.,Ładziński P.,Kaspera W.

Abstract

Abstract Background Conclusions from studies evaluating vessel dimensions and their deviations from values resulting from the principle of minimum work (PMW) on the formation of intracranial aneurysms (IAs) are still inconclusive. Our study aimed to perform a morphometric analysis of cerebral arterial bifurcations harbouring aneurysms. Methods The study comprised 147 patients with basilar artery (BA) and middle cerebral artery (MCA) aneurysms and 106 patients constituting the control group. The following morphometric parameters were evaluated: the radii of vessels forming the bifurcation, the junction exponent, the values of the bifurcation angles (Φ1 and Φ2 angles between the parent vessel trunk axis and the larger or smaller branches, respectively; α angle, the total bifurcation angle) and the difference between the predicted optimal and observed branch angles. Results The analysed parameters for internal carotid artery (ICA) bifurcations were not significantly different among the groups. The MCA and BA bifurcation angles and the radii of the parent MCA and BA vessels with aneurysms were significantly higher than those of the control group. The differences between the predicted optimal and observed branch angles were significantly higher for BA and MCA bifurcations with aneurysms compared to the control group. The mean junction exponent for bifurcations in the circle of Willis (i.e., ICA and BA bifurcations, respectively) and MCA bifurcations with aneurysms was significantly lower than the theoretical optimum and did not significantly differ among the groups. In a multilevel multivariate logistic regression analysis, the branch angles and the radius from the parent vessel were significant independent predictors of the presence of an IA. The ROC analysis indicated that the α angle was the best performer in discriminating between aneurysmal and nonaneurysmal bifurcations. Conclusions The dimensions of the arteries forming the circle of Willis do not follow the PMW. Deviation from the energetically optimum geometry for bifurcations beyond the circle of Willis (particularly, a larger radius of the parent artery and a wider total bifurcation angle) may lead to the formation of IAs. Further studies are warranted to investigate the significance of vessel dimensions and the bifurcation angle on the magnitude of shear stress in the walls of arterial bifurcations.

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3