Author:
Tang Liya,Si Juanning,Sun Lei,Mao Gengsheng,Yu Shengyuan
Abstract
Abstract
Background
Operating an aircraft is associated with a large mental workload; however, knowledge of the mental workload of ROV operators is limited. The purpose of this study was to establish a digital system for assessing the mental workload of remotely operated vehicle (ROV) operators using hemodynamic parameters, and compare results of different groups with different experience levels.
Method
Forty-one trainee pilots performed flight tasks once daily for 5 consecutive days in a flight simulation. Forty-five pilots experienced pilots and 68 experienced drivers were also included. Hemodynamic responses were measured by functional near-infrared spectroscopy (fNIRS).
Results
The median duration of peak oxyhemoglobin was 147.13 s (interquartile range [IQR] 21.97, 401.70 s) in the left brain and 180.74 s (IQR 34.37, 432.01 s) in the right brain in the experienced pilot group, and 184.42 s (IQR 3.41, 451.81 s) on day 5 in the left brain and 160.30 s (IQR 2.62, 528.20 s) in the right brain in the trainee group.
Conclusion
Navigation training reduces peak oxyhemoglobin duration, and may potentially be used as a surrogate marker for mental workload of ROV operators. Peak oxyhemoglobin concentration during s task may allow development of a simplified scheme for optimizing flight performance based on the mental workload of a pilot.
Funder
Beijing Municipal Education Commission Science and Technology Program
Publisher
Springer Science and Business Media LLC
Subject
Neurology (clinical),General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献