Effects of motor imagery based brain-computer interface on upper limb function and attention in stroke patients with hemiplegia: a randomized controlled trial

Author:

Liu Xiaolu,Zhang Wendong,Li Weibo,Zhang Shaohua,Lv Peiyuan,Yin Yu

Abstract

Abstract Background Seeking positive and comprehensive rehabilitation methods after stroke is an urgent problem to be solved, which is very important to improve the dysfunction of stroke. The aim of this study was to investigate the effects of motor imagery-based brain-computer interface training (MI-BCI) on upper limb function and attention in stroke patients with hemiplegia. Methods Sixty stroke patients with impairment of upper extremity function and decreased attention were randomly assigned to the control group (CR group) or the experimental group (BCI group) in a 1:1 ratio. Patients in the CR group received conventional rehabilitation. Patients in the BCI group received 20 min of MI-BCI training five times a week for 3 weeks (15 sessions) in addition to conventional rehabilitation. The primary outcome measures were the changes in Fugl-Meyer Motor Function Assessment of Upper Extremities (FMA-UE) and Attention Network Test (ANT) from baseline to 3 weeks. Results About 93% of the patients completed the allocated training. Compared with the CR group, among those in the BCI group, FMA-UE was increased by 8.0 points (95%CI, 5.0 to 10.0; P < 0.001). Alert network response time (32.4ms; 95%CI, 58.4 to 85.6; P < 0.001), orienting network response (5.6ms; 95%CI, 29.8 to 55.8; P = 0.010), and corrects number (8.0; 95%CI, 17.0 to 28.0; P < 0.001) also increased in the BCI group compared with the CR group. Additionally, the executive control network response time (− 105.9ms; 95%CI, − 68.3 to − 23.6; P = 0.002), the total average response time (− 244.8ms; 95%CI, − 155.8 to − 66.2; P = 0.002), and total time (− 122.0ms; 95%CI, − 80.0 to − 35.0; P = 0.001) were reduced in the BCI group compared with the CR group. Conclusion MI-BCI combined with conventional rehabilitation training could better enhance upper limb motor function and attention in stroke patients. This training method may be feasible and suitable for individuals with stroke. Trial registration : This study was registered in the Chinese Clinical Trial Registry with Portal Number ChiCTR2100050430(27/08/2021).

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine

Reference50 articles.

1. Guo N, Wang X, Duanmu D, Huang X, Li X, Fan Y, et al. SSVEP-Based Brain Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society. 2022;30:1737–44. https://doi.org/10.1109/tnsre.2022.3185262.

2. Ma Q, Li R, Wang L, Yin P, Wang Y, Yan C, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: an analysis for the global burden of Disease Study 2019. The Lancet Public health. 2021;6(12):e897–e906. https://doi.org/10.1016/s2468-2667(21)00228-0.

3. Lee SH, Kim SS, Lee BH. Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial. Physiother Theory Pract. 2022;38 9:1126–34. https://doi.org/10.1080/09593985.2020.1831114.

4. Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: from designing to application. Comput Biol Med. 2020;123:103843. https://doi.org/10.1016/j.compbiomed.2020.103843.

5. Lieshout E, van de Port IG, Dijkhuizen RM, Visser-Meily JMA. Does upper limb strength play a prominent role in health-related quality of life in stroke patients discharged from inpatient rehabilitation? Top Stroke Rehabil. 2020;27 7:525–33. https://doi.org/10.1080/10749357.2020.1738662.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3