Reduced brain subcortical volumes in patients with glaucoma: a pilot neuroimaging study using the region-of-interest-based approach

Author:

Ha Yae Won,Jang Heeseon,Koh Sang-Baek,Noh Young,Lee Seung-Koo,Seo Sang Won,Cho Jaelim,Kim Changsoo

Abstract

Abstract Background While numerous neuroimaging studies have demonstrated that glaucoma is associated with smaller volumes of the visual cortices in the brain, only a few studies have linked glaucoma with brain structures beyond the visual cortices. Therefore, the objective of this study was to compare brain imaging markers and neuropsychological performance between individuals with and without glaucoma. Methods We identified 64 individuals with glaucoma and randomly selected 128 age-, sex-, and education level-matched individuals without glaucoma from a community-based cohort. The study participants underwent 3 T brain magnetic resonance imaging and neuropsychological assessment battery. Regional cortical thickness and subcortical volume were estimated from the brain images of the participants. We used a linear mixed model after adjusting for potential confounding variables. Results Cortical thickness in the occipital lobe was significantly smaller in individuals with glaucoma than in the matched individuals (β = − 0.04 mm, P = 0.014). This did not remain significant after adjusting for cardiovascular risk factors (β = − 0.02 mm, P = 0.67). Individuals with glaucoma had smaller volumes of the thalamus (β = − 212.8 mm3, P = 0.028), caudate (β = − 170.0 mm3, P = 0.029), putamen (β = − 151.4 mm3, P = 0.051), pallidum (β = − 103.6 mm3, P = 0.007), hippocampus (β = − 141.4 mm3, P = 0.026), and amygdala (β = − 87.9 mm3, P = 0.018) compared with those without glaucoma. Among neuropsychological battery tests, only the Stroop color reading test  score was significantly lower in individuals with glaucoma compared with those without glaucoma (β = − 0.44, P = 0.038). Conclusions We found that glaucoma was associated with smaller volumes of the thalamus, caudate, putamen, pallidum, amygdala, and hippocampus.

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3