Validation of quantitative gait analysis systems for Parkinson’s disease for use in supervised and unsupervised environments

Author:

Alberto Sara,Cabral Sílvia,Proença João,Pona-Ferreira Filipa,Leitão Mariana,Bouça-Machado Raquel,Kauppila Linda Azevedo,Veloso António P.,Costa Rui M.,Ferreira Joaquim J.,Matias RicardoORCID

Abstract

Abstract Background Gait impairments are among the most common and impactful symptoms of Parkinson’s disease (PD). Recent technological advances aim to quantify these impairments using low-cost wearable systems for use in either supervised clinical consultations or long-term unsupervised monitoring of gait in ecological environments. However, very few of these wearable systems have been validated comparatively to a criterion of established validity. Objective We developed two movement analysis solutions (3D full-body kinematics based on inertial sensors, and a smartphone application) in which validity was assessed versus the optoelectronic criterion in a population of PD patients. Methods Nineteen subjects with PD (7 female) participated in the study (age: 62 ± 12.27 years; disease duration: 6.39 ± 3.70 years; HY: 2 ± 0.23). Each participant underwent a gait analysis whilst barefoot, at a self-selected speed, for a distance of 3 times 10 m in a straight line, assessed simultaneously with all three systems. Results Our results show excellent agreement between either solution and the optoelectronic criterion. Both systems differentiate between PD patients and healthy controls, and between PD patients in ON or OFF medication states (normal difference distributions pooled from published research in PD patients in ON and OFF states that included an age-matched healthy control group). Fair to high waveform similarity and mean absolute errors below the mean relative orientation accuracy of the equipment were found when comparing the angular kinematics between the full-body inertial sensor-based system and the optoelectronic criterion. Conclusions We conclude that the presented solutions produce accurate results and can capture clinically relevant parameters using commodity wearable sensors or a simple smartphone. This validation will hopefully enable the adoption of these systems for supervised and unsupervised gait analysis in clinical practice and clinical trials.

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3