Abstract
Abstract
Background
We investigated the relationship between consciousness and the ascending reticular activating system (ARAS) by using diffusion tensor tractography (DTT) in patients with traumatic brain injury (TBI).
Methods
Twenty-six patients with TBI and 13 healthy control subjects were recruited for this study. Glasgow Coma Scale (GCS) scores were used for evaluation of subject consciousness state at the chronic stage of TBI (at DTT scanning), According to the GCS score, the patient group was divided into two subgroups: A (14 patients;impaired consciousness: GCS score < 15, and B (12 patients;intact consciousness;GCS score = 15). Fractional anisotropy (FA) and tract volume (TV) values were assessed in the lower dorsal and upper ARAS.
Results
The FA values of the lower dorsal ARAS and the upper ARAS in patient subgroup A were significantly lower than those in patient subgroup B and the control group(p < 0.05). However, the FA and TV values for the lower dorsal ARAS and the upper ARAS were not significantly different between patient subgroup B and the control group(p > 0.05). The FA value of the lower dorsal ARAS(r = 0.473,p < 0.05) and the TV of upper ARAS(r = 0.484,p < 0.05) had moderate positive correlations with the GCS score. The FA value of the upper ARAS had a strong positive correlation with the GCS score of the patient group(r = 0.780,p < 0.05).
Conclusions
We detected a close relationship between consciousness at the chronic stage of TBI and injuries of the lower dorsal and upper ARAS (especially, the upper ARAS) in patients who showed impaired consciousness at the onset of TBI. We believe that our results can be useful during the development of therapeutic strategies for patients with impaired consciousness following TBI.
Trial registration
YUMC 2019–06–032-003. Retrospectively registered 06 Jun 2020.
Publisher
Springer Science and Business Media LLC
Subject
Neurology (clinical),General Medicine
Reference21 articles.
1. Godbolt AK, Deboussard CN, Stenberg M, Lindgren M, Ulfarsson T, Borg J. Disorders of consciousness after severe traumatic brain injury: a swedish-icelandic study of incidence, outcomes and implications for optimizing care pathways. J Rehabil Med. 2013;45:741–8.
2. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002;58:349–53.
3. Huisman TA, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, et al. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol. 2004;25:370–6.
4. Rutgers DR, Fillard P, Paradot G, Tadie M, Lasjaunias P, Ducreux D. Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury. AJNR Am J Neuroradiol. 2008;29:1730–5.
5. Haberg AK, Olsen A, Moen KG, Schirmer-Mikalsen K, Visser E, Finnanger TG, et al. White matter microstructure in chronic moderate-to-severe traumatic brain injury: impact of acute-phase injury-related variables and associations with outcome measures. J Neurosci Res. 2015;93:1109–26.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献