Author:
Jitsakulchaidej Pimthong,Wivatvongvana Pakorn,Kitisak Kittipong
Abstract
Abstract
Background
TMS is being used to aid in the diagnosis of central nervous system (CNS) illnesses. It is useful in planning rehabilitation programs and setting appropriate goals for patients. We used a parabolic coil with biphasic pulse stimulation to find normal values for diagnostic TMS parameters.
Objectives
1. To determine the normal motor threshold (MT), motor evoked potentials (MEP), central motor conduction time (CMCT), intracortical facilitation (ICF), short-interval intracortical inhibition (SICI), and silent period (SP) values. 2. To measure the MEP latencies of abductor pollicis brevis (APB) and extensor digitorum brevis (EDB) at various ages, heights, and arm and leg lengths.
Study design
Descriptive Study.
Setting
Department of Rehabilitation Medicine, Chiang Mai University, Thailand.
Subjects
Forty-eight healthy participants volunteered for the study.
Methods
All participants received a single diagnostic TMS using a parabolic coil with biphasic pulse stimulation on the left primary motor cortex (M1). All parameters: MT, MEP, CMCT, ICF, SICI, and SP were recorded through surface EMGs at the right APB and EDB. Outcome parameters were reported by the mean and standard deviation (SD) or median and interquartile range (IQR), according to data distribution. MEP latencies of APB and EDB were also measured at various ages, heights, and arm and leg lengths.
Results
APB-MEP latencies at 120% and 140% MT were 21.77 ± 1.47 and 21.17 ± 1.44 ms. APB-CMCT at 120% and 140% MT were 7.81 ± 1.32 and 7.19 ± 1.21 ms. APB-MEP amplitudes at 120% and 140% MT were 1.04 (0.80–1.68) and 2.24 (1.47–3.52) mV. EDB-MEP latencies at 120% and 140% MT were 37.14 ± 2.85 and 36.46 ± 2.53 ms. EDB-CMCT at 120% and 140% MT were 14.33 ± 2.50 and 13.63 ± 2.57 ms. EDB-MEP amplitudes at 120% and 140% MT were 0.60 (0.38–0.98) and 0.95 (0.69–1.55) mV. ICF amplitudes of APB and EDB were 2.26 (1.61–3.49) and 1.26 (0.88–1.98) mV. SICI amplitudes of APB and EDB were 0.21 (0.13–0.51) and 0.18 (0.09–0.29) mV. MEP latencies of APB at 120% and 140% MT were different between heights < 160 cm and ≥ 160 cm (p < 0.001 and p < 0.001) and different between arm lengths < 65 and ≥ 65 cm (p = 0.022 and p = 0.002).
Conclusion
We established diagnostic TMS measurements using a parabolic coil with a biphasic pulse configuration. EDB has a higher MT than APB. The 140/120 MEP ratio of APB and EDB is two-fold. The optimal MEP recording for APB is 120%, whereas EDB is 140% of MT. CMCT by the F-wave is more convenient and tolerable for patients. ICF provides a twofold increase in MEP amplitude. SICI provides a ¼-fold of MEP amplitude. SP from APB and EDB are 121.58 ± 21.50 and 181.01 ± 40.99 ms, respectively. Height and MEP latencies have a modest relationship, whereas height and arm length share a strong positive correlation.
Funder
Faculty of Medicine, Chiang Mai University
Publisher
Springer Science and Business Media LLC
Subject
Neurology (clinical),General Medicine