Author:
Hu Qili,Shi Mengqiu,Li Yunfei,Zhao Xiaohu
Abstract
Abstract
Background
Neurofilament Light (NfL) is a biomarker for early neurodegeneration in Alzheimer’s disease (AD). This study aims to examine the association between plasma NfL and multi-modal neuroimaging features across the AD spectrum and whether NfL predicts future tau deposition.
Methods
The present study recruited 517 participants comprising Aβ negative cognitively normal (CN-) participants (n = 135), Aβ positive cognitively normal (CN +) participants (n = 64), individuals with amnestic mild cognitive impairment (aMCI) (n = 212), and those diagnosed with AD dementia (n = 106). All the participants underwent multi-modal neuroimaging examinations. Cross-sectional and longitudinal associations between plasma NfL and multi-modal neuro-imaging features were evaluated using partial correlation analysis and linear mixed effects models. We also used linear regression analysis to investigate the association of baseline plasma NfL with future PET tau load. Mediation analysis was used to explore whether the effect of NfL on cognition was mediated by these imaging biomarkers.
Results
The results showed that baseline NfL levels and the rate of change were associated with Aβ deposition, brain atrophy, brain connectome, glucose metabolism, and brain perfusion in AD signature regions (P<0.05). In both Aβ positive CN and MCI participants, baseline NfL showed a significant predictive value of elevating tau burden in the left medial orbitofrontal cortex and para-hippocampus (β = 0.336, P = 0.032; β = 0.313, P = 0.047). Lastly, the multi-modal neuroimaging features mediated the association between plasma NfL and cognitive performance.
Conclusions
The study supports the association between plasma NfL and multi-modal neuroimaging features in AD-vulnerable regions and its predictive value for future tau deposition.
Funder
Shanghai Science and Technology Commission, “Science and Technology Innovation Action Plan” project in the field of laboratory animal research
the Minhang District Speciality Discipline Programme
Key Medical Speciality funded by Shanghai Fifth People’s Hospital, Fudan University
the Minhang District Natural Science Research Project Application/Project Assignment
Publisher
Springer Science and Business Media LLC