Elevated plasma neurofilament light was associated with multi-modal neuroimaging features in Alzheimer’s disease signature regions and predicted future tau deposition

Author:

Hu Qili,Shi Mengqiu,Li Yunfei,Zhao Xiaohu

Abstract

Abstract Background Neurofilament Light (NfL) is a biomarker for early neurodegeneration in Alzheimer’s disease (AD). This study aims to examine the association between plasma NfL and multi-modal neuroimaging features across the AD spectrum and whether NfL predicts future tau deposition. Methods The present study recruited 517 participants comprising Aβ negative cognitively normal (CN-) participants (n = 135), Aβ positive cognitively normal (CN +) participants (n = 64), individuals with amnestic mild cognitive impairment (aMCI) (n = 212), and those diagnosed with AD dementia (n = 106). All the participants underwent multi-modal neuroimaging examinations. Cross-sectional and longitudinal associations between plasma NfL and multi-modal neuro-imaging features were evaluated using partial correlation analysis and linear mixed effects models. We also used linear regression analysis to investigate the association of baseline plasma NfL with future PET tau load. Mediation analysis was used to explore whether the effect of NfL on cognition was mediated by these imaging biomarkers. Results The results showed that baseline NfL levels and the rate of change were associated with Aβ deposition, brain atrophy, brain connectome, glucose metabolism, and brain perfusion in AD signature regions (P<0.05). In both Aβ positive CN and MCI participants, baseline NfL showed a significant predictive value of elevating tau burden in the left medial orbitofrontal cortex and para-hippocampus (β = 0.336, P = 0.032; β = 0.313, P = 0.047). Lastly, the multi-modal neuroimaging features mediated the association between plasma NfL and cognitive performance. Conclusions The study supports the association between plasma NfL and multi-modal neuroimaging features in AD-vulnerable regions and its predictive value for future tau deposition.

Funder

Shanghai Science and Technology Commission, “Science and Technology Innovation Action Plan” project in the field of laboratory animal research

the Minhang District Speciality Discipline Programme

Key Medical Speciality funded by Shanghai Fifth People’s Hospital, Fudan University

the Minhang District Natural Science Research Project Application/Project Assignment

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3