Fetal endocrine axes mRNA expression levels are related to sex and intrauterine position

Author:

Yael Ariel,Fishman Ruth,Matas Devorah,Doniger Tirza,Vortman Yoni,Koren LeeORCID

Abstract

Abstract Background The hypothalamic–pituitary–adrenal (HPA) and -gonadal (HPG) axes are two major pathways that connect the neural and endocrine systems in vertebrates. Factors such as prenatal stress and maternal exposure to exogenous steroids have been shown to affect these pathways during fetal development. Another less studied factor is the transfer of hormones across fetuses in multifetal pregnancies. This form of transfer has been shown to influence the morphology, anatomy, physiology, and behavior of the offspring in litter-bearing mammals, an influence termed the intrauterine position (IUP) effect. In this study, we sought to delineate how the IUP effects HPA and HPG brain receptors, peptides, and enzymes (hereafter components) in utero and how these influences may differ between males and females. Methods We utilized the unconventional model of culled free-ranging nutria (Myocastor coypus), with its large natural variation. We collected brain tissues from nutria fetuses and quantified the expression of key HPA and HPG components in three brain regions: prefrontal cortex, hypothalamus, and striatum. Results We found an interaction between sex and IUP in the mineralocorticoid receptor (MR), gonadotropin-releasing hormone receptor (GNRHR), androgen receptor (AR), and estrogen receptor alpha (ESR1). IUP was significant in both gonadotropin-releasing hormone (GnRH) and its receptor GNRHR, but in different ways. In the hypothalamus, fetuses adjacent to same-sex neighbors had higher expression of GnRH than fetuses neighboring the opposite sex. Conversely, in the cortex, GNRHR exhibited the inverse pattern, and fetuses that were neighboring the opposite sex had higher expression levels than those neighboring the same sex. Regardless of IUP, in most components that showed significant sex differences, female fetuses had higher mRNA expression levels than male fetuses. We also found that HPA and HPG components were highly related in the early stages of gestation, and that there was an interaction between sex and developmental stage. In the early stages of pregnancy, female component expression levels were more correlated than males’, but in the last trimester of pregnancy, male components were more related to each other than female’s. Conclusions This study suggests that there are sexually different mechanisms to regulate the HPA and HPG axes during fetal development. Higher mRNA expression levels of endocrine axes components may be a mechanism to help females cope with prolonged androgen exposure over a long gestational period. Additionally, these findings suggest different coordination requirements of male and female endocrine axes during stages of fetal development.

Funder

Israel Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3