Development of a novel nanoformulation based on aloe vera-derived carbon quantum dot and chromium-doped alumina nanoparticle (Al2O3:Cr@Cdot NPs): evaluating the anticancer and antimicrobial activities of nanoparticles in photodynamic therapy

Author:

Karimi Merat,Homayoonfal Mina,Zahedifar Mostafa,Ostadian Amirreza,Adibi Reyhaneh,Mohammadzadeh Bahareh,Raisi Arash,Ravaei Fatemeh,Rashki Somaye,Khakbraghi Mahsa,Hamblin Michael,Kheirkhah Zahra,Sadeghi Ehsan,Nejati Majid,Mirzaei Hamed

Abstract

AbstractThe objective of this study was to synthesize a novel antibacterial and anticancer nanoformulation using aloe vera-derived carbon quantum dots (Cdot) and chromium-doped alumina nanoparticles (Al2O3:Cr/Cdot NPs) via a sol–gel method. X-ray diffraction (XRD) analysis confirmed crystalline NPs with a size range of 10–12 nm, while energy-dispersive X-ray spectroscopy (EDS) revealed their elemental composition without impurities. Fourier-transform infrared spectroscopy (FT-IR) indicated strong interactions between Cdot and Al2O3:Cr NPs, forming a robust heterostructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images provided visual confirmation of monodisperse, spherical NPs, ensuring uniformity for further applications. Evaluation of reactive oxygen species (ROS) demonstrated superior generation of singlet oxygen and hydroxyl radicals by Al2O3:Cr/Cdot NPs, essential for photodynamic therapy. Minimum inhibitory concentration (MIC) tests revealed potent antibacterial activity against drug-resistant bacteria, inhibiting biofilm formation by 89% and 95% for MRSA and P. aeruginosa PAO1, respectively. Furthermore, the anticancer activity of Al2O3:Cr/Cdot NPs was assessed using C26 cells, demonstrating enhanced cytotoxicity upon UVA exposure. The NPs exhibited an inhibitory concentration (IC50) of 20 μg/mL without UVA exposure, decreasing to 10 μg/mL with UVA exposure, highlighting the synergistic effect of UVA light in enhancing cytotoxicity. Overall, these findings underscore the significant potential of Al2O3:Cr/Cdot NPs as multifunctional agents for addressing drug-resistant bacteria and advancing cancer therapy, offering promising avenues for nanomedicine research and development.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3