Hyaluronan self-agglomerating nanoparticles for non-small cell lung cancer targeting

Author:

Kim Joo-Eun,Park Young-JoonORCID

Abstract

Abstract Background Owing to the limited amount of research, there are no nanoparticle-based anticancer agents that use hydrophilic drugs. Therefore, we developed irinotecan-loaded self-agglomerating hyaluronan nanoparticles (ISHNs). While irinotecan has high hydrophilicity, the resulting nanoparticle should possess high anticancer drug-loading capacity and allow selective targeting of the cluster of differentiation 44 (CD44) protein, which is overexpressed on the surface of tumor cells. Results The ISHNs were successfully made with hyaluronan (HA) as a targeting moiety, FeCl3 as a binder, and D-glutamic acid (GA) as a stabilizer. The ISHNs self-agglomerated via chelating bonding and were lyophilized using a freeze dryer. The particle diameter and zeta potential of the ISHNs were 93.8 ± 4.48 nm and − 36.3 ± 0.28 mV, respectively; a relatively narrow size distribution was observed. The drug fixation yield and drug-loading concentration were 58.3% and 1.75 mg/mL, respectively. Affinity studies revealed a tenfold stronger targeting to H23 (CD44+) non-small-cell lung cancer (NSCLC) cells, than of A549 (CD44) cells. Conclusion We developed irinotecan-loaded ISHNs, which comprised irinotecan hydrochloride as a water-soluble anticancer agent, HA as a targeting moiety, FeCl3 as a binder for self-agglomeration, and GA as a stabilizer; HA is a binding material for CD44 in NSCLC cells. Owing to their ease of manufacture, excellent stability, non-cell toxicity and CD44-targeting ability, ISHNs are potential nanocarriers for passive and active tumor targeting.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3