Investigating the effect of outer layer of magnetic particles on cervical cancer cells HeLa by magnetic fluid hyperthermia

Author:

Bhardwaj Anand,Jain Neeraj,Parekh KinnariORCID

Abstract

Abstract Background Magnetic fluid hyperthermia (MFH) is a successful nanotechnology application in recent decade where a biocompatible magnetic fluid is used to kill cancer cells in a controlled heating using AC magnetic field. In the present study, two ferrite-based magnetic fluids, with and without surfactant coating, were synthesized to study the effect of the outer layer of magnetic nanoparticles on cervical cancer cells. The magnetic fluid without surfactant coating (MFWI) was made stable by providing negative charge on the surface of each particle. On the other hand, lauric acid was used as a surfactant to have a stable dispersion of particles in aqueous media (MFWL). Methods The structural, magnetic properties and induction heating response of both the fluids were investigated using XRD, VSM, DLS, TGA, FTIR, and a high-frequency induction heater. The in vitro cytotoxicity of the synthesized fluids was observed on HeLa cells by performing MTT assay, and the effect of magnetic fluid hyperthermia was examined using Trypan blue assay. Results The crystallite size of surfactant stabilized particles was higher (11.0 ± 0.5 nm) compared to the charge stabilized particles (8.3 ± 0.5 nm). Induction heating experiments showed that the specific absorption rate of the surfactant-coated particles was almost double compared to ionic particle fluid. Magnetic fluid hyperthermia up to 1 hour at a concentration of 0.25 mg/mL of surfactant-coated magnetic fluid and 0.2 mg/mL concentration of charged fluid resulted in approximately 66 and 80% cell death, respectively, compared to untreated control cells. Conclusion The preliminary analysis of this study shows significant cell death due to hyperthermia, wherein MFWI revealed higher cytotoxicity compared to MFWL. Additional analysis into the role of the outer stabilizing layer on nanoparticle’s surface, concentration of nanoparticles, and hyperthermic duration is desirable to utilize MFH as a futuristic anti-cancer therapeutic tool.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3