Using green biosynthesized kaempferol-coated sliver nanoparticles to inhibit cancer cells growth: an in vitro study using hepatocellular carcinoma (HepG2)

Author:

Alyami Nouf M.,Alyami Hanadi M.,Almeer Rafa

Abstract

AbstractThe ongoing loss of human life owing to various forms of cancer necessitates the development of a more effective/honorable therapeutic approach. Moreover, finding a novel green-synthesized anti-cancer therapy is vital because of the induced drug resistance against the commonly used drugs. Collecting the advantage of the nanometer size of nanoparticles with the biosafety of plant-based substances might potentiate the anticancer effect with minimal toxic effect. In the current study, we aimed to green-synthesize using kaempferol (flavonoid) as a coating the silver nanoparticles (AgNPs) and investigated their anti-cancer activity in hepatocellular carcinoma (HepG2) cell line. First of all, kaempferol-coated AgNPs characters were well-defined using Fourier transmission infrared (FTIR), X-ray diffraction (XRD), zetasizer, and transmission electron microscopy (TEM). The results showed their 200 nm size, spherical shape, less aggregation with high stability characteristics. Then, the cytotoxic effect of both 1/3 and 1/2 LC50 of AgNPs, and doxorubicin (DOX, anticancer drug) on HepG2 cells was evaluated by dimethylthiazolyltetrazolium bromide (MTT) assay and release of lactate dehydrogenase (LDH) leakage percent. Reactive oxygen species (ROS) and apoptotic markers were also analyzed, along with the migration and invasion of HepG2 cells were recorded. Our findings showed that kaempferol-coated AgNPs could induce cytotoxic effects and reduce the viability of HepG2 cells in a concentration-dependent manner. LDH leakage % was significantly increased in cells treated with kaempferol-coated AgNPs confirming their cytotoxic effect. ROS generation and lipid peroxidation could significantly increase in HepG2 cells treated with kaempferol-coated AgNPs along with the exhaustion of antioxidant Glutathione (GSH) marker revealing the induced oxidative damage. Oxidative damage-mediated apoptosis was confirmed by the elevated levels of the pro-apoptotic markers (Bax, Cyt-c, P53, and caspase-3) and the reduced level of anti-apoptotic marker (Bcl-2) using enzyme-linked immunosorbent assay (ELISA). Furthermore, kaempferol-coated AgNPs could suppress the migrating and invading ability of HepG2 cells showing their antimetastatic effect. To end up, kaempferol-coated AgNPs can induce a potential anti-cancer effect in HepG2 cells via oxidative stress-mediated apoptosis.

Funder

King Saud University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

Reference48 articles.

1. Adegbola O, Ajayi GO (2008) Screening for gestational diabetes mellitus in Nigerian pregnant women using fifty-gram oral glucose challenge test. West Afr J Med 27:139–143

2. Al-Brakati A et al (2021) Possible role of Kaempferol in reversing oxidative damage, inflammation, and apoptosis-mediated cortical injury following cadmium exposure. Neurotox Res 39:198–209. https://doi.org/10.1007/s12640-020-00300-2

3. Al-Otaibi AM, Al-Gebaly AS, Almeer R, Albasher G, Al-Qahtani WS, Abdel Moneim AE (2022) Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-022-19166-2

4. Ansari L, Shiehzadeh F, Taherzadeh Z, Nikoofal-Sahlabadi S, Momtazi-Borojeni A, Sahebkar A (2017) The most prevalent side effects of pegylated liposomal doxorubicin monotherapy in women with metastatic breast cancer: a systematic. Rev Clin Trials 24:189–193

5. Balogh J et al (2016) Hepatocellular carcinoma: a review. J Hepatocell Carcinoma 3:41–53. https://doi.org/10.2147/jhc.S61146

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3