Dual enhancement in the radiosensitivity of prostate cancer through nanoparticles and chemotherapeutics

Author:

Jackson Nolan,Hill Iona,Alhussan Abdulaziz,Bromma Kyle,Morgan Jessica,Abousaida Belal,Zahra Yasmin,Mackeyev Yuri,Beckham Wayne,Herchko Steven,Krishnan Sunil,Chithrani Devika Basnagge

Abstract

Abstract Background Radiotherapy (RT) is an essential component in the treatment regimens for many cancer patients. However, the dose escalation required to improve curative results is hindered due to the normal tissue toxicity that is induced. The introduction of radiosensitizers to RT treatment is an avenue that is currently being explored to overcome this issue. By introducing radiosensitizers into tumor sites, it is possible to preferentially enhance the local dose deposited. Gold nanoparticles (GNPs) are a potential candidate that have shown great promise in increasing the radiosensitivity of cancer cells through an enhancement in DNA damage. Furthermore, docetaxel (DTX) is a chemotherapeutic agent that arrests cells in the G2/M phase of the cell cycle, the phase most sensitive to radiation damage. We hypothesized that by incorporating DTX to GNP-enhanced radiotherapy treatment, we could further improve the radiosensitization experienced by cancer cells. To assess this strategy, we analyzed the radiotherapeutic effects on monolayer cell cultures in vitro, as well as on a mice prostate xenograft model in vivo while using clinically feasible concentrations for both GNPs and DTX. Results The introduction of DTX to GNP-enhanced radiotherapy further increased the radiotherapeutic effects experienced by cancer cells. A 38% increase in DNA double-strand breaks was observed with the combination of GNP/DTX vs GNP alone after a dose of 2 Gy was administered. In vivo results displayed significant reduction in tumor growth over a 30-day observation period with the treatment of GNP/DTX/RT when compared to GNP/RT after a single 5 Gy dose was given to mice. The treatment strategy also resulted in 100% mice survival, which was not observed for other treatment conditions. Conclusions Incorporating DTX to work in unison with GNPs and RT can increase the efficacy of RT treatment. Our study suggests that the treatment strategy could improve tumor control through local dose enhancement. As the concentrations used in this study are clinically feasible, there is potential for this strategy to be translated into clinical settings.

Funder

Natural Sciences and Engineering Research Council of Canada

National Institutes of Health

NanoMedicines Innovation Network

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3