Author:
El-Shahawy Ahmed. A. G.,Dief Esam M.,El-Dek S. I.,Farghali A. A.,Abo El-Ela Fatma I.
Abstract
AbstractGallic acid is a natural antioxidant present in many plants such as tea, sumac, gallnut and other plants. This naturally occurring gallic acid is known to exhibit auto-oxidation under certain conditions, generating several reactive oxygen species (ROS) including superoxides, hydroxyls and hydrogen peroxide radicals that plays key roles in its antimicrobial activity. Here, we demonstrate that incorporating gallic acid as a linker in Ni-based metal organic frameworks (Ni-gallate MOFs) produces mesoporous nanostructures with antimicrobial and anticancer activity. The synthesized Ni-gallate MOFs have shown antibacterial activity against both Gram-positive and Gram-negative bacteria, and antifungal activity against two different strains of fungi species. Furthermore, Ni-gallate MOFs have shown a significant cytotoxic effect on rhabdomyosarcoma (RMS) cells, compared to the standard anticancer drug, Doxorubicin. In this study, the Ni-gallate MOF nanostructures were characterized using scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infra-red (FTIR), and Brunauer–Emmett–Teller (BET) method for surface area. The antibacterial and antifungal activity of gallic acid-based mesoporous framework nanostructure were tested, suggesting that Ni-gallate MOF has a dual anticancer and antimicrobial activity.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering
Reference44 articles.
1. Badhani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 5(35):27540–27557
2. Banerjee S, Lollar CT, Xiao Z, Fang Y, Zhou H-C (2020) Biomedical integration of metal–organic frameworks. Trends Chem 2(5):467–479
3. Bernas T, Dobrucki J (2002) Mitochondrial and nonmitochondrial reduction of MTT: Interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry J Int Soc Anal Cytol 47(4):236–242
4. Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 544:142–152
5. Borges A, Ferreira C, Saavedra MJ, Simões M (2013) Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb drug Resist 19(4):256–265
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献