A novel PH1/pE27HGFK1 nanoparticles for orthotopic glioblastoma therapy

Author:

zhang Jian,Li Tao,Liu Ling,Chen Zhenpu,Li Li,Yao Xiaoxuan,Cheng Jiaxing,Hu Xiaoyuan,Guo Jiyin,Li Ruilei,Ge Chunlei,Ling Eng-Ang,Yao Hong

Abstract

Abstract Background The therapeutic resistance to ionizing radiation (IR) and angiogenesis inhibitors is a great challenge for clinicians in the treatment of glioblastoma, which is associated with Hepatocyte growth factor (HGF)/MET, VEGF/VEGFR signaling pathway, and the crosstalk between them. In this study, we developed a novel recombinant fusion protein, rE27HGFK1, via HGFK1 tandem with 27 N-terminal residues of Endostatin (E27) and produced a polymeric nanoparticle formed by the co-polymer of PEGylated H1 cationic polymer (PH1) with a plasmid encoding the secreted rE27HGFK1 protein (PH1/pE27HGFK1). We further investigated the anti-tumor effects of rE27HGFK1 and PH1/pE27HGFK1 nanoparticles both in vivo and in vitro. Methods We expressed and purified the rE27HGFK1 protein via E. coli. Then, we performed cellular experiments to determine the antitumoral effects and IR radio-sensitivities of the rE27HGFK1 protein in vitro. Finally, we performed animal studies to determine the tumor-targeted abilities and antitumoral activities of the polymeric nanoparticles, PH1/pE27HGFK1, in an orthotopic U118-Luc-bearing xenografted mouse model. Results We showed that rE27HGFK1 inhibited the proliferation and the angiogenesis and enhanced the senescence and radiosensitivity of GBM via both MET and VEFGR2 signaling mediated-p16 over-expression and the down-regulation of cyclin D1-CDK4-Rb axis activities in vitro. Next, we displayed that systemic administration of the PEGylated H1 cationic polymer (PH1) effectively delivered the reporter genes to the brain tumor of an orthotopic U118-bearing xenografted mouse model. Finally, we showed that PH1/pE27HGFK1 significantly produced antitumor effects with radiosensitivity in the orthotopic U118-Luc-bearing xenografted Blab/c mouse model through inhibiting angiogenesis and tumor cell proliferation, as well as inducing the necrosis of tumor cells in vivo. Conclusions The PH1/pE27HGFK1 nano-drug combined with radiotherapy can be used as a potentially effective therapeutic strategy for Glioblastoma multiforme.

Funder

National Natural Science Foundation of China

the Fundamental Research Project of Yunnan Provincial Department of Science and Technology

the Joint Special Funds for the Department of Science and Technology of Yunnan Province‑Kunming Medical University

the Yunnan Provincial Department of Education Science Research Fund Project

Joint Special Funds for the Department of Science and Technology of Yunnan Province‑Kunming Medical University

Prof. Guo Jun Expert Workstation in Yunnan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3