Designing nanostructured lipid carriers modified with folate-conjugated chitosan for targeted delivery of osthole to HT-29 colon cancer cells: investigation of anticancer, antioxidant, and antibacterial activities

Author:

Hosseini Torshizi Ghazal,Homayouni Tabrizi Masoud,Karimi Ehsan,Younesi Atefeh,Larian Zahra

Abstract

AbstractThe present study proposed to design nanostructured lipid carriers (NLC) coated with chitosan (CS) conjugated folate (FA) for the targeted delivery of Osthole (OST) to the HT-29 colon cancer cell line and improve its anticancer capability. To assess the physicochemical characteristics of OST-loaded NLC decorated with CS-conjugated FA (OST-NCF-NPS), several techniques, including DLS, SEM, and FTIR, were applied. After determining the encapsulation efficiency of OST in CSFA-modified NLC-NPs, an MTT test was conducted to evaluate the cytotoxic effects of this nano platform on the HT-29 cancer cell line in comparison to normal HFF cells. Possible mechanisms of apoptosis in cancer cells treated with OST-NCF-NPs were examined using qPCR, flow cytometry, and AO/PI fluorescent staining methods. Moreover, the antioxidant capacity of these biosynthesized nanocarriers was determined using ABTS and DPPH methods, and their antibacterial potential was measured through disk diffusion, MIC, and MBC assays. According to the findings, OST-NCF-NPS had the ideal average size of 179.19 nm, low polydispersity (PI = 0.23), acceptable physical stability (ζ-potential =  + 18.99 mV), and high entrapment efficiency (83.5%). The MTT data demonstrated the selective cytotoxicity of NPs toward cancerous cells compared to normal cells. Cell cycle and Annexin V/Propidium Iodide (AnV/PI) analysis indicated that OST-NCF-NPs increased the sub-G1 population and AnV/PI-positive cells. The occurrence of programmed cell death in the treated cells was also verified by altered expression of proapoptotic (BAX and caspase-3) and antiapoptotic (Bcl-2) genes. Furthermore, the NPs exhibited strong antibacterial activity, particularly against gram-negative bacteria, and high antioxidant effects in reducing ABTS and DPPH-free radicals. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3