Hyaluronated nanoparticles deliver raloxifene to CD44-expressed colon cancer cells and regulate lncRNAs/miRNAs epigenetic cascade

Author:

Abd-Rabou Ahmed A.ORCID,Abdelaziz Ahmed M.,Shaker Olfat G.,Ayeldeen Ghada

Abstract

Abstract Background Colorectal malignant cells (CRC) are one of the world’s main causes of cancer mortality and morbidity. Notwithstanding the plenty of anti-CRC therapeutics, its prognosis remains not selective owing to cancer resistance to these therapeutics. Raloxifene (RX), a medication firstly used to treat osteoporosis, was recently licenced for the prevention of CRC. Unfortunately, due to medication resistance, many RX-based therapies are likely to become ineffective. Recently, we identified a novel method of administration to lengthen the half-life of RX by mixing it with chitosan (CS) and hyaluronic acid (HA). Thus, the rationale of the current study was to investigate how colon cancer cells were affected by RX-HA-CS nanoparticles (RX NPs) in terms of targetability, cytotoxicity, and epigenetic cascade alteration. Results RX NP had an entrapment efficiency (EE%) of 90.0 ± 8.12%. Compared to HCT 116 cells, Caco-2 cells were more susceptible to the cytotoxic effects of RX and its NP as well as they had a higher binding affinity to CD44 receptors compared to normal WI-38 cells. In comparison to the free RX, the RX NP’s cytotoxic fold changes in HCT 116 and Caco-2 cells were 2.16 and 2.52, respectively. Furthermore, the epigenetic cascade of some noncoding RNAs was examined. Moreover, particular protein concentrations were investigated in all tested cells after application of the proposed therapies. Our results showed that the RX NP recorded higher remarkable cytotoxic impact on CRC cells compared to the free RX. Intriguingly, it was hypothesized that RX nanoparticles attacked colon cancerous cells by up-regulating miR-944 and E-cadherin (ECN) expressions, while down-regulating the expressions of PPARγ, YKL-40, VEGF, H-19, LINC00641, HULC, HOTTIP, miR-92a, miR-200, and miR-21. Conclusions We may conclude that the RX NP effectively targets CRC cells in vitro via altering lncRNAs and miRNAs epigenetic cascade as well as cellular uptake through CD44-expressed CRC cells.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3