Biological modeling of gadolinium-based nanoparticles radio-enhancement for kilovoltage photons: a Monte Carlo study

Author:

Wu Jianan,Xu Xiaohan,Liang Ying,Chen Tujia,Quan Enzhuo,Wang Luhua

Abstract

Abstract Background Gadolinium-based nanoparticles (GdNPs) are clinically used agents to increase the radiosensitivity of tumor cells. However, studies on the mechanisms and biological modeling of GdNP radio-enhancement are still preliminary. This study aims to investigate the mechanism of radio-enhancement of GdNPs for kilovoltage photons using Monte Carlo (MC) simulations, and to establish local effect model (LEM)-based biological model of GdNP radiosensitization. Methods The spectrum and yield of secondary electrons and dose enhancement around a single GdNP and clustered GdNPs were calculated in a water cube phantom by MC track-structure simulations using TOPAS code. We constructed a partial shell-like cell geometry model of pancreatic cancer cell based on transmission electron microscope (TEM) observations. LEM-based biological modeling of GdNP radiosensitization was established based on the MC-calculated nano-scale dose distributions in the cell model to predict the cell surviving fractions after irradiation. Results The yield of secondary electrons for GdNP was 0.16% of the yield for gold nanoparticle (GNP), whereas the average electron energy was 12% higher. The majority of the dose enhancement came from the contribution of Auger electrons. GdNP clusters had a larger range and extent of dose enhancement than single GdNPs, although GdNP clustering reduced radial dose per interacting photon significantly. For the dose range between 0 and 8 Gy, the surviving fraction predicted using LEM-based biological model laid within one standard deviation of the published experimental results, and the deviations between them were all within 25%. Conclusions The mechanism of radio-enhancement of GdNPs for kilovoltage photons was investigated using MC simulations. The prediction results of the established LEM-based biological model for GdNP radiosensitization showed good agreement with published experimental results, although the deviation of simulation parameters can lead to large disparity in the results. To our knowledge, this was the first LEM-based biological model for GdNP radiosensitization.

Funder

National Natural Science Foundation of China

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen

Shenzhen Science and Technology Program

Shenzhen Key Medical Discipline Construction Fund

Sanming Project of Medicine in Shenzhen

Shenzhen High-level Hospital Construction Fund

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3