A [60]fullerene nanoconjugate with gemcitabine: synthesis, biophysical properties and biological evaluation for treating pancreatic cancer

Author:

Nalepa Paweł,Gawecki Robert,Szewczyk Grzegorz,Balin Katarzyna,Dulski Mateusz,Sajewicz Mieczysław,Mrozek-Wilczkiewicz Anna,Musioł Robert,Polanski JaroslawORCID,Serda MaciejORCID

Abstract

Abstract Background The first-line chemotherapy drug that is used to treat pancreatic ductal adenocarcinoma is gemcitabine. Unfortunately, its effectiveness is hampered by its chemo-resistance, low vascularization and drug biodistribution limitations in the tumor microenvironment. Novel nanotherapeutics must be developed in order to improve the prognosis for patients with pancreatic cancer. Results We developed a synthetic methodology for obtaining a water-soluble nanoconjugate of a [60]fullerene-glycine derivative with the FDA-approved drug gemcitabine (nanoC60GEM). The proposed synthetic protocol enables a highly water-soluble [60]fullerene-glycine derivative (6) to be obtained, which was next successfully conjugated with gemcitabine using the EDCI/NHS carbodiimide protocol. The desired nanoconjugate was characterized using mass spectrometry and DLS, IR and XPS techniques. The photogeneration of singlet oxygen and the superoxide anion radical were studied by measuring 1O2 near-infrared luminescence at 1270 nm, followed by spin trapping of the DMPO adducts by EPR spectroscopy. The biological assays that were performed indicate that there is an inhibition of the cell cycle in the S phase and the induction of apoptosis by nanoC60GEM. Conclusion In this paper, we present a robust approach for synthesizing a highly water-soluble [60]fullerene nanoconjugate with gemcitabine. The performed biological assays on pancreatic cancer cell lines demonstrated cytotoxic effects of nanoC60GEM, which were enhanced by the generation of reactive oxygen species after blue LED irradiation of synthesized fullerene nanomaterial.

Funder

Narodowe Centrum Nauki

National Science Center

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3