Abstract
Abstract
Background
Under current scenarios of climate change and habitat loss, many wild animals, especially large predators, are moving into novel energetically challenging environments. Consequently, changes in terrain associated with such moves may heighten energetic costs and effect the decline of populations in new localities.
Methods
To examine locomotor costs of a large carnivorous mammal moving in mountainous habitats, the oxygen consumption of captive pumas (Puma concolor) was measured during treadmill locomotion on level and incline (6.8°) surfaces. These data were used to predict energetic costs of locomotor behaviours of free-ranging pumas equipped with GPS/accelerometer collars in California’s Santa Cruz Mountains.
Results
Incline walking resulted in a 42.0% ± 7.2 SEM increase in the costs of transport compared to level performance. Pumas negotiated steep terrain by traversing across hillsides (mean hill incline 17.2° ± 0.3 SEM; mean path incline 7.3° ± 0.1 SEM). Pumas also walked more slowly up steeper paths, thereby minimizing the energetic impact of vertical terrains. Estimated daily energy expenditure (DEE) based on GPS-derived speeds of free-ranging pumas was 18.3 MJ day− 1 ± 0.2 SEM. Calculations show that a 20 degree increase in mean steepness of the terrain would increase puma DEE by less than 1% as they only spend a small proportion (10%) of their day travelling. They also avoided elevated costs by utilizing slower speeds and shallower path angles.
Conclusions
While many factors influence survival in novel habitats, we illustrate the importance of behaviours which reduce locomotor costs when traversing new, energetically challenging environments, and demonstrate that these behaviours are utilised by pumas in the wild.
Funder
Department for Education
Company of Biologists
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献