Body-size dependent foraging strategies in the Christmas Island flying-fox: implications for seed and pollen dispersal within a threatened island ecosystem

Author:

Todd Christopher M.ORCID,Westcott David A.,Martin John M.,Rose Karrie,McKeown Adam,Hall Jane,Welbergen Justin A.

Abstract

Abstract Background Animals are important vectors for the dispersal of a wide variety of plant species, and thus play a key role in maintaining the health and biodiversity of natural ecosystems. On oceanic islands, flying-foxes are often the only seed dispersers or pollinators. However, many flying-fox populations are currently in decline, particularly those of insular species, and this has consequences for the ecological services they provide. Knowledge of the drivers and the scale of flying-fox movements is important in determining the ecological roles that flying-foxes play on islands. This information is also useful for understanding the potential long-term consequences for forest dynamics resulting from population declines or extinction, and so can aid in the development of evidence-based ecological management strategies. To these ends, we examined the foraging movements, floral resource use, and social interactions of the Critically Endangered Christmas Island flying-fox (Pteropus natalis). Methods Utilization distributions, using movement-based kernel estimates (MBKE) were generated to determine nightly foraging movements of GPS-tracked P. natalis (n = 24). Generalized linear models (GLMs), linear mixed-effect models (LMMs), and Generalized linear mixed-effects model (GLMMs) were constructed to explain how intrinsic factors (body mass, skeletal size, and sex) affected the extent of foraging movements. In addition, we identified pollen collected from facial and body swabs of P. natalis (n = 216) to determine foraging resource use. Direct observations (n = 272) of foraging P. natalis enabled us to assess the various behaviors used to defend foraging resources. Results Larger P. natalis individuals spent more time foraging and less time traveling between foraging patches, traveled shorter nightly distances, and had smaller overall foraging ranges than smaller conspecifics. Additionally, larger individuals visited a lower diversity of floral resources. Conclusions Our findings suggest that smaller P. natalis individuals are the primary vectors of long-distance dispersal of pollen and digested seeds in this species, providing a vital mechanism for maintaining the flow of plant genetic diversity across Christmas Island. Overall, our study highlights the need for more holistic research approaches that incorporate population demographics when assessing a species’ ecological services.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference94 articles.

1. Abe H, Ueno S, Tsumura Y, Hasegawa M. Expanded home range of pollinator birds facilitates greater pollen flow of Camellia japonica in a forest heavily damaged by volcanic activity. Single-pollen genotyping. Berlin: Springer; 2011. p. 47–62.

2. Andrews CW. On the fauna of Christmas Island. Proc Zool Soc Lond. 1909;1909:101–3.

3. Arnold TW. Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag. 2010;74:1175–8.

4. Aziz SA, McConkey KR, Tanalgo K, Sritongchuay T, Low M-R, Yong JY, Mildenstein TL, Nuevo-Diego CE, Lim V-C, Racey PA. The critical importance of Old World fruit bats for healthy ecosystems and economies. Front Ecol Evol. 2021;9:181.

5. Balmford A, Rosser A, Albon S. Correlates of female choice in resource-defending antelope. Behav Ecol Sociobiol. 1992;31:107–14.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3