Tracking animal movements using biomarkers in tail hairs: a novel approach for animal geolocating from sulfur isoscapes

Author:

Kabalika ZabibuORCID,Morrison Thomas A.,McGill Rona A. R.,Munishi Linus K.,Ekwem Divine,Mahene Wilson Leonidas,Lobora Alex L.,Newton Jason,Morales Juan M.,Haydon Daniel T.,Hopcraft Grant G. J. C.

Abstract

Abstract Background Current animal tracking studies are most often based on the application of external geolocators such as GPS and radio transmitters. While these technologies provide detailed movement data, they are costly to acquire and maintain, which often restricts sample sizes. Furthermore, deploying external geolocators requires physically capturing and recapturing of animals, which poses an additional welfare concern. Natural biomarkers provide an alternative, non-invasive approach for addressing a range of geolocation questions and can, because of relatively low cost, be collected from many individuals thereby broadening the scope for population-wide inference. Methods We developed a low-cost, minimally invasive method for distinguishing between local versus non-local movements of cattle using sulfur isotope ratios (δ34S) in cattle tail hair collected in the Greater Serengeti Ecosystem, Tanzania. Results We used a Generalized Additive Model to generate a predicted δ34S isoscape across the study area. This isoscape was constructed using spatial smoothers and underpinned by the positive relationship between δ34S values and lithology. We then established a strong relationship between δ34S from recent sections of cattle tail hair and the δ34S from grasses sampled in the immediate vicinity of an individual’s location, suggesting δ34S in the hair reflects the δ34S in the environment. By combining uncertainty in estimation of the isoscape, with predictions of tail hair δ34S given an animal’s position in the isoscape we estimated the anisotropic distribution of travel distances across the Serengeti ecosystem sufficient to detect movement using sulfur stable isotopes. Conclusions While the focus of our study was on cattle, this approach can be modified to understand movements in other mobile organisms where the sulfur isoscape is sufficiently heterogeneous relative to the spatial scale of animal movements and where tracking with traditional methods is difficult.

Funder

Karimjee Jivanjee Foundation

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3