Author:
Moccetti Coralie,Sperlich Nicola,Saboret Grégoire,ten Brink Hanna,Brodersen Jakob
Abstract
Abstract
Background
Seasonal movements of animals often result in the transfer of large amounts of energy and nutrients across ecosystem boundaries, which may have large consequences on local food webs through various pathways. While this is known for both terrestrial- and aquatic organisms, quantitative estimates on its effects on food web structure and identification of key pathways are scarce, due to the difficulty in obtaining replication on ecosystem level with negative control, i.e. comparable systems without migration.
Methods
In this study, we estimate the impact of Arctic charr (Salvelinus alpinus) migration on riverine ecosystem structure, by comparing multiple streams with strictly resident populations above natural migration barriers with streams below those barriers harboring partially migratory populations. We compared density estimates and size structure between above and below populations. Diet differences were examined through the analysis of stomach contents, changes in trophic position were examined by using stable isotopes. To infer growth rate of resident individuals, back-growth calculation was performed using otoliths.
Results
We find higher densities of small juveniles in partially migratory populations, where juvenile Arctic charr show initially lower growth, likely due to higher intraspecific competition. After reaching a size, where they can start feeding on eggs and smaller juveniles, which are both more frequent in partially migratory populations, growth surpasses that of resident populations. Cannibalism induced by high juvenile densities occurred almost exclusively in populations with migration and represents an altered energy pathway to the food web. The presence of large cannibalistic charr feeding on smaller ones that have a similar trophic level as charr from strictly resident populations (based on stomach content) coupled with steeper δ15N-size regression slopes illustrate the general increase of food chain length in systems with migration.
Conclusions
Our results thus suggest that the consumption of migration-derived resources may result in longer food chains through middle-up rather than bottom-up effects. Furthermore, by occupying the apex of the food chain and feeding on juvenile conspecifics, resident individuals experience reduced competition with their young counterparts, which potentially balances their fitness with migratory individuals.
Funder
Swiss National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference95 articles.
1. Hoare B. Animal Migration: remarkable journeys in the Wild. University of California Press; 2009. p. 176.
2. Cresswell KA, Satterthwaite WH. Understanding the evolution of migration through empirical examples. In: Milner-Gulland EJ, Fryxell JM, Anthony RE, Sinclair, editors. Animal migration: a synthesis. Oxford: Oxford University Press; 2011. pp. 7–16.
3. Bauer S, Hoye BJ. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science. 2014;344(6179):1242552.
4. van der Vegt W, Bokhorst S. Bird traits and their nutrient impact on terrestrial invertebrate populations. Polar Biology; 2023. https://doi.org/10.1007/s00300-023-03161-5
5. González-Bergonzoni I, Johansen KL, Mosbech A, Landkildehus F, Jeppesen E, Davidson TA. Small birds, big effects: the little auk (Alle alle) transforms high Arctic ecosystems. Proc Biol Sci. 2017;284(1849). https://doi.org/10.1098/rspb.2016.2572